精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若函数是增函数,则称函数具有性质A

,求的解析式,并判断是否具有性质A

判断命题“减函数不具有性质A”是否真命题,并说明理由;

若函数具有性质A,求实数k的取值范围,并讨论此时函数在区间上零点的个数.

【答案】(1),具有性质A;(2)假命题;(3)详见解析.

【解析】

,结合即可得出解析式,和单调性,进而可得出结果;

判断命题“减函数不具有性质A”,为假命题,举出反例即可,如

若函数具有性质A,可知为增函数,进而可求出实数k的取值范围;再令,则在区间上零点的个数,即是的根的个数,结合k的取值范围,即可求出结果.

解:

R上递增,可知具有性质A

命题“减函数不具有性质A”,为假命题,比如:

R上递增,具有性质A

若函数具有性质A

可得

递增,可得,解得

,可得,即

可得时显然成立;

时,

递减,且值域为

时,1有三解,3个零点;

时,,即,可得1个零点;

时,t有一解,x两解,即两个零点;

,且时,无解,即x无解,无零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,过顶点在原点、对称轴为轴的抛物线上的点作斜率分别为的直线,分别交抛物线两点.

1)求抛物线的标准方程和准线方程;

2)若,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

平面直角坐标系中,射线,曲线的参数方程为为参数),曲线的方程为;以原点为极点,轴的非负半轴为极轴建立极坐标系.曲线的极坐标方程为.

(Ⅰ)写出射线的极坐标方程以及曲线的普通方程;

(Ⅱ)已知射线交于,与交于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,平面,且

1)求证:平面

2)求钝二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则以下结论正确的是(

A.函数的单调减区间是

B.函数有且只有1个零点

C.存在正实数,使得成立

D.对任意两个正实数,且,若

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级的全体学生平均分成个小组,且每个小组均有名男生和多名女生.现从各个小组中随机抽取一名同学参加社区服务活动,若抽取的名学生中至少有一名男生的概率为,则(

A.该班级共有名学生

B.第一小组的男生甲被抽去参加社区服务的概率为

C.抽取的名学生中男女生数量相同的概率是

D.设抽取的名学生中女生数量为,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方格表任意一个角上的小方格表挖去,剩下的图形称为角形”.现在方格表中放置一些两两不重叠的角形,要求角形的边界与方格表的边界或分格线重合.求正整数的最大值,使得无论以何种方式放置了个角形之后,总能在方格表中再放入一个完整的角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件。从某企业生产的桥梁构件中抽取件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间内的频率之比为.

(1)求这些桥梁构件质量指标值落在区间内的频率;

(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取件,记这件桥梁构件中质量指标值位于区间内的桥梁构件件数为,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案