【题目】如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.
(Ⅰ)证明:平面;
(Ⅱ)若,求二面角的正切值.
【答案】(1)见解析 ; (2)3 .
【解析】
试题分析: (1)证明线面垂直,一般利用线面垂直判定及性质定理,经多次转化得证:先由线面垂直PA⊥平面ABCD得线线垂直PA⊥BD.同理PC⊥BD.,再由线线垂直得线面垂直BD⊥平面PAC. (2)求二面角正切值,一般利用空间直角坐标系,根据空间向量数量积进行求解:先建立恰当直角坐标系,设各点坐标,利用方程组得两平面法向量,再根据向量数量积求其夹角余弦值,最后根据同角三角函数关系求正切值.
试题解析:(1)证明 ∵PA⊥平面ABCD,BD平面ABCD,
∴PA⊥BD.
同理由PC⊥平面BDE,可证得PC⊥BD.
又PA∩PC=P,∴BD⊥平面PAC.
(2)解
如图,
分别以射线AB,AD,AP为x轴、y轴、z轴的正半轴建立空间直角坐标系.
由(1)知BD⊥平面PAC,
又AC平面PAC,∴BD⊥AC.
故矩形ABCD为正方形,
∴AB=BC=CD=AD=2.
∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,1).
∴=(2,0,-1),=(0,2,0),=(-2,2,0).
设平面PBC的一个法向量为n=(x,y,z),则
∴取x=1得n=(1,0,2).
∵BD⊥平面PAC,
∴=(-2,2,0)为平面PAC的一个法向量.
cos<n,>=
设二面角B-PC-A的平面角为α,由图知0<α<,
∴cos α=,sin α=
∴tan α==3,即二面角B-PC-A的正切值为3.
科目:高中数学 来源: 题型:
【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:,,
,≈2.646.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax3﹣3x2+1(a>0),定义h(x)=max{f(x),g(x)}= .
(1)求函数f(x)的极值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求实数a的取值范围;
(3)若g(x)=lnx,试讨论函数h(x)(x>0)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆.
(Ⅰ)若圆的切线在轴和轴上的截距相等,求此切线的方程;
(Ⅱ)从圆外一点向该圆引一条切线,切点为,为坐标原点,且,求使取得最小值的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{xn}满足x1=0,xn+1=﹣x2n+xn+c(n∈N*).
(Ⅰ)证明:{xn}是递减数列的充分必要条件是c<0;
(Ⅱ)求c的取值范围,使{xn}是递增数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点M(﹣3,0),N(3,0),点P为坐标平面内一动点,且,则动点P(x,y)到两点A(﹣3,0)、B(﹣2,3)的距离之和的最小值为( )
A. 4 B. 5 C. 6 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
【答案】A
【解析】
由题意可得 q>1,且 an >0,由条件可得 a1a2…a13=4a1a2…a9,化简得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.
等比数列{an}是递增数列,其前n项的积为Tn(n∈N*),若T13=4T9 ,设公比为q,
则由题意可得 q>1,且 an >0.
∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.
又由等比数列的性质可得 a8a15=a10a13=a11a12,∴a8a15=2.
故选:A.
【点睛】
本题主要考查等比数列的定义和性质,求得 a10a11a12a13=4是解题的关键.
【题型】单选题
【结束】
10
【题目】若直线y=2x上存在点(x,y)满足约束条件,则实数m的最大值为
A. -1 B. 1 C. D. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长AB=AD=2,AA1=3的长方体ABCDA1B1C1D1中,点E是平面BCC1B1上的动点,点F是CD的中点.试确定点E的位置,使D1E⊥平面AB1F.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com