精英家教网 > 高中数学 > 题目详情
(2009•闵行区一模)已知函数f(x)的图象与函数y=ax-1,(a>1)的图象关于直线y=x对称,g(x)=loga(x2-3x+3)(a>1).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](m>-1)上的值域为[loga
p
m
loga
p
n
]
,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x)(a>1),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.
分析:(1)根据函数f(x)的图象与函数 y=ax的图象关于直线y=x对称可知两函数互为反函数,从而求出函数f(x)的解析式;
(2)根据函数的单调性建立等式关系,x2-3x+3=p+3x在(
3
2
,+∞)有两个不等的根,从而求出p的范围;
另解:可转化为函数y=x2+x,x∈(-1,0)∪(0,+∞)图象与函数y=p的图象有两个交点问题,数形结合求解
(3)先求出函数F(x)的最大值,若w≥F(x)对一切x∈(-1,+∞)恒成立,转化为w≥F(x)max
解答:(本题满分18分)
解:(文科)(1)由已知得 f(x)=loga(x+1);                          (4分)
(2)∵a>1,∴f(x)在(-1,+∞)上为单调递增函数,(6分)∴在区间[m,n](m>-1),g(m)=loga(m+1)=loga
p
m
g(n)=loga(n+1)=loga
p
n

m+1=
p
m
,n+1=
p
n
,n>m>-1
.∴m,n是方程x+1=
p
x

即方程x2+x-p=0,x∈(-1,0)∪(0,+∞)的两个相异的解,(8分)
这等价于
△=1+4p>0
(-1)2+(-1)-p>0
-
1
2
>-1
,(10分)    解得-
1
4
<p<0
为所求.(12分)
另解:可转化为函数y=x2+x,x∈(-1,0)∪(0,+∞)图象与函数y=p的图象有两个交点问题,数形结合求得:-
1
4
<p<0

(3)F(x)=af(x)-g(x)=aloga(x+1)-loga(x2-3x+3)=
(x+1)
x2-3x+3
,(x>-1)
(14分)∵(x+1)+
7
x+1
-5≥2
7
-5
,当且仅当x=
7
-1
时等号成立,∴
x+1
x2-3x+3
=
1
(x+1)+
7
x+1
-5
∈(0,
2
7
+5
3
]
,(16分)∴F(x)max=F(
7
-1)=
2
7
+5
3
,∵w≥F(x)恒成立,∴w≥F(x)max,所以w≥
2
7
+5
3
为所求.(18分)
点评:题主要考查了函数解析式的求解,以及函数的值域和列举法,同时考查了分析问题,解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•闵行区一模)已知以角B为钝角的△ABC的内角A、B、C的对边分别为a、b、c,
m
=(a,  2b)
n
=(
3
,  -sinA)
,且
m
n

(1)求角B的大小;
(2)求sinA+
3
cosA
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)已知无穷数列{an},首项a1=3,其前n项和为Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若数列{an}的各项和为-
8
3
a
,则a=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)在平面在直角坐标系中,定义
xn+1=yn-xn
yn+1=yn+xn
(n∈N*)为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换,我们把它称为点变换.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)(n∈N*)是经过点变换得到的一列点.设an=|PnPn+1|,数列{an}的前n项和为Sn,那么S20的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)函数f(x)=
3x
+1
的反函数f-1(x)=
(x-1)3
(x-1)3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区一模)在平面直角坐标系xOy中,以Ox轴为始边作锐角α,其终边与单位圆相交于A点,若A点的横坐标
4
5
,则tan(
α
2
+
π
4
)
的值为
2
2

查看答案和解析>>

同步练习册答案