精英家教网 > 高中数学 > 题目详情

【题目】已知函数处有极值

1)求的解析式;

2)若关于的不等式恒成立,求实数的取值范围.

【答案】1;(2.

【解析】

1)由题意得出可得出关于的方程组,解出这两个量的值,进而可求得函数的解析式;

2)构造函数,由题意可知,不等式对任意的恒成立,求出导数,对实数进行分类讨论,分析函数在区间上的单调性,求出其最大值,通过解不等式可求得实数的取值范围.

1

因为函数处有极值

,解得

所以

2)不等式恒成立,

即不等式恒成立,

则不等式对任意的恒成立,则.

函数的定义域为.

①当时,对任意的,则函数上单调递增.

,所以不等式不恒成立;

②当时,

,得,当时,;当时,

因此,函数上单调递增,在上单调递减.

故函数的最大值为,由题意得需.

函数上单调递减,

,由,得

因此,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】14分)已知ab为常数,且a≠0,函数fx=﹣ax+b+axlnxfe=2e=2.71828…是自然对数的底数).

I)求实数b的值;

II)求函数fx)的单调区间;

III)当a=1时,是否同时存在实数mMmM),使得对每一个t∈[mM],直线y=t与曲线y=fx)(x∈[e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方中,E的中点,以为折痕,把折起到的位置,且平面平面.

1)求证:

2)在棱上是否存在一点P,使得平面,若存在,求出点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,,平面平面,点上一点.

(1)若平面,求证:点中点;

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列事件A,B是独立事件的是(  )

A. 一枚硬币掷两次,A=“第一次为正面向上”,B=“第二次为反面向上”

B. 袋中有两个白球和两个黑球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”

C. 掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”

D. A=“人能活到20岁”,B=“人能活到50岁”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧棱与底面垂直,,点的中点.

(1)求证:平面

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角ABC的对边分别为abc,且,则的面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》卷五《商功》中有如下叙述今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈“刍甍”指的是底面为矩形的对称型屋脊状的几何体,“下广三丈”是指底面矩形宽三丈,“袤四丈”是指底面矩形长四丈,“上袤二丈”是指脊长二丈,“无宽”是指脊无宽度,“高一丈”是指几何体的高为一丈现有一个刍甍如图所示,下广三丈,袤四丈,上袤三丈,无广,高二丈,则该刍甍的外接球的表面积为_______________平方丈

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

查看答案和解析>>

同步练习册答案