精英家教网 > 高中数学 > 题目详情
某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为(  )
A、10B、15C、20D、30
考点:系统抽样方法
专题:计算题,概率与统计
分析:由系统抽样法,分段间隔为
1500
50
=30.
解答: 解:∵N=1500,n=50;
1500
50
=30,
故选D.
点评:本题考查了系统抽样的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记数列{an}的前n项和为Sn,a1=a(a≠0),且2Sn=(n+1)•an
(1)求数列{an}的通项公式an与Sn
(2)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+
1
a22
+…+
1
an-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名男生和4名女生中选出4人,若男生中的甲与女生中的乙至少要有1人在内,共有不同的选法种数是(  )
A、35B、45C、91D、126

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形的一个性质为:设△SAB的两边SA、SB互相垂直,点S在AC边上的射影为H,则SB2=BH•AB.结论推广到三棱锥,设三棱锥S-ABC的三个侧面SAB、SBC、SAC两两相互垂直,点S在平面ABC上的射影为H,则有:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

知直线ax+by+c=0与圆O:x2+y2=4相交于A、B二点,且|AB|=2
3

(1)求
OA
OB
的值;
(2)若直线AB过点(2,1),求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

使数列{an}的前五项依次是1,2,4,7,11的一个通项公式是an=(  )
A、
n2-n+2
2
B、
n2-n
2
C、
n2+n+2
2
D、
n2+n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若存在非零实数m使得对任意x∈M(M⊆D),有x+m∈D且f(x+m)≥f(x),则称f(x)为M上的m梦想函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2且f(x)为R上的4梦想函数.那么实数a的取值范围(  )
A、-1≤a≤1
B、0<a<1
C、-2<a<2
D、-2≤a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

①比较
7
+
10
3
+
14
的大小
②若关于x的不等式-
1
2
x2+2x>mx
的解集为{x|0<x<2},求m值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f′(x0)=-3,则
lim
h→0
f(x0+h)-f(x0-h)
h
=(  )
A、-3B、-6C、-9D、-12

查看答案和解析>>

同步练习册答案