精英家教网 > 高中数学 > 题目详情
已知tan(α+
π
4
)=3,则sinαcosα=
 
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:根据同角三角函数的基本关系进行化简即可.
解答: 解:∵tan(α+
π
4
)=3,
∴tanα=tan(α+
π
4
-
π
4
)=
tan(α+
π
4
)-tan
π
4
1+tan(α+
π
4
)
=
3-1
1+3
=
1
2

则sinαcosα=
sinαcosα
sin2α+cos2α
=
tanα
1+tan2α
=
1
2
1+(
1
2
)2
=
2
5

故答案为:
2
5
点评:本题主要考查三角函数的化简,根据同角是三角函数关系式以及1的代换是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把一根长为24cm的铁丝截成两段,各自圈成一个正方形,则这两个正方形的面积之和的最小值为(  )
A、9cm2
B、12cm2
C、18cm2
D、24cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在实数集上,f(2-x)=f(x),x≥1,f(x)=log3x,则有(  )
A、f(
1
3
)<f(2)<f(
1
2
B、f(
1
2
)<f(2)<f(
1
3
C、f(
1
2
)<f(
1
3
)<f(2)
D、f(2)<f(
1
2
)<f(
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-3,1),B(3,1),C(1,3),则△ABC中BC边上的高所在的直线方程为(  )
A、x+y=0
B、x-y+4=0
C、x+y+2=0
D、x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α-π)=2cos(α-2π),求
sin(3π-α)+5cos(-α)
2cos(π-α)-sin(α-π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直角坐标平面上,向量
a
=(-3,2λ),
b
=(-3λ,2),定点A(3,0),其中0<λ<1.一自点A发出的光线以
a
为方向向量射到y轴的B点处,并被y轴反射,其反射光线与自点A以
b
为方向向量的光线相交于点P.
(1)求点P的轨迹方程;
(2)问A、B、P、O四点能否共圆(O为坐标原点),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合U=R,A={x∈N|x≤3},B={-2,-1,0,1,2},则(∁UA)∩B等于(  )
A、{-2,-1,0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若△ABF2为等边三角形,则双曲线的离心率为(  )
A、
6
2
B、
3
C、
5
+1
2
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

若从区间(0,e)内随机取两个数,则这两个数之积不小于e的概率为
 

查看答案和解析>>

同步练习册答案