精英家教网 > 高中数学 > 题目详情

【题目】中,设所成的角是,绕直线旋转至,则在所有旋转过程中,关于所成的角的说法正确的是( )

A.时,B.时,

C.时,D.时,

【答案】D

【解析】

首先理解异面直线所成的角的范围是,排除选项A,B,C,对于D可根据

旋转,形成以为轴的圆锥,是母线,再将异面直线所成的角,转化为相交直线所成的角,判断最大值和最小值.

因为是异面直线所成的角,所以

A.时,的范围有可能超过,比如,,所以不正确;

B.时,当,此时,也不正确;

C.,当,此时,故也不正确;

D. 时,旋转,形成以为轴的圆锥,是母线,如图,

过点的平行线,且所成的角转化为所成的角,由图象可知,当时,角最大,为,当在平面内时,不与重合时,角最小,此时为

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程,并求出曲线公共弦所在直线的极坐标方程;

2)若射线与曲线交于两点,与曲线交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.

1)求动点的轨迹的方程;

2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次运动会上,某单位派出了由6名主力队员和5名替补队员组成的代表队参加比赛.

1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为,求随机变量的数学期望;

2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场,那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:

质量指标检测分数

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班组生产的产品件数

7

18

40

29

6

乙班组生产的产品件数

8

12

40

32

8

(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;

(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?

甲班组

乙班组

合计

合格品

次品

合计

(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的右焦点为,离心率为,过点的直线相交于两点,点为线段的中点.

1)当的倾斜角为时,求直线的方程;

2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元;乙公司无底薪,40单以内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元.假设同一公司的送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:

甲公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

20

40

20

10

10

乙公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

10

20

20

40

10

(1)现从甲公司记录的这100天中随机抽取两天,求这两天送餐单数都大于40的概率;

(2)若将频率视为概率,回答以下问题:

(i)记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;

(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为4的正方形,平面分别为的中点.

1)证明:平面.

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,平面底面,且分别为的中点.

1)求证:平面

2)求证:平面平面

3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案