¶¨Ò壺Èôº¯Êýf£¨x£©¶ÔÓÚÆ䶨ÒåÓòÄÚµÄijһÊýx0£¬ÓÐ f £¨x0£©=x0£¬Ôò³Æx0ÊÇf £¨x£©µÄÒ»¸ö²»¶¯µã£®ÒÑÖªº¯Êýf£¨x£©=ax2+£¨b+1£©x+b-1 £¨a¡Ù0£©£®
£¨¢ñ£©µ±a=1£¬b=-2ʱ£¬Çóº¯Êýf£¨x£©µÄ²»¶¯µã£»
£¨¢ò£©Èô¶ÔÈÎÒâµÄʵÊýb£¬º¯Êýf£¨x£©ºãÓÐÁ½¸ö²»¶¯µã£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Èôy=f£¨x£©Í¼ÏóÉÏÁ½¸öµãA¡¢BµÄºá×ø±êÊǺ¯Êýf£¨x£©µÄ²»¶¯µã£¬
ÇÒA¡¢BÁ½µã¹ØÓÚÖ±Ïßy=kx+Êýѧ¹«Ê½¶Ô³Æ£¬ÇóbµÄ×îСֵ£®

½â£º£¨¢ñ£©µ±a=1£¬b=-2ʱ£¬ÓÐf £¨x£©=x2-x-3£¬
Áîx2-x-3=x£¬»¯¼òµÃ£ºx2-2x-3=0£¬
½âµÃ£ºx1=-1£¬»òx2=3
¹ÊËùÇóµÄ²»¶¯µãΪ-1»ò3£®£¨4·Ö£©

£¨¢ò£©Áîax2+£¨b+1£©x+b-1=x£¬Ôòax2+bx+b-1=0¢Ù
ÓÉÌâÒ⣬·½³Ì¢ÙºãÓÐÁ½¸ö²»µÈʵ¸ù£¬ËùÒÔ¡÷=b2-4a£¨b-1£©£¾0£¬
¼´b2-4ab+4a£¾0ºã³ÉÁ¢£¬£¨6·Ö£©
ÕûÀíµÃb2-4ab+4a=£¨b-2a£©2+4a-4a2£¾0£¬
¹Ê4a-4a2£¾0£¬¼´0£¼a£¼1£¨8·Ö£©

£¨¢ó£©ÉèA£¨x1£¬x1£©£¬B£¨x2£¬x2£©£¨x1¡Ùx2£©£¬ÔòkAB=1£¬¡àk=-1£¬
ËùÒÔy=-x+£¬£¨9·Ö£©
ÓÖABµÄÖеãÔÚ¸ÃÖ±ÏßÉÏ£¬ËùÒÔ=-+£¬
¡àx1+x2=£¬
¶øx1¡¢x2Ó¦ÊÇ·½³Ì¢ÙµÄÁ½¸ö¸ù£¬ËùÒÔx1+x2=-£¬¼´-=£¬
¡à£¨12·Ö£©
==
¡àµ±a=¡Ê£¨0£¬1£©Ê±£¬bmin=-1£®£¨14·Ö£©
·ÖÎö£º£¨I£©½«a=1£¬b=-2´úÈëf£¨x£©=ax2+£¨b+1£©x+b-1 £¨a¡Ù0£©£¬Çó³öf£¨x£©£¬Áîf£¨x£©=x£¬½â·½³ÌÇ󲻶¯µã¼´¿É£»
£¨II£©ÓÉax2+£¨b+1£©x+b-1=xÓÐÁ½¸ö²»¶¯µã£¬¼´ax2+bx+b-1=0ÓÐÁ½¸ö²»µÈʵ¸ù£¬¿Éͨ¹ýÅбðʽ´óÓÚ0µÃµ½¹ØÓÚ²ÎÊýa£¬bµÄ²»µÈʽb2-4ab+4a£¾0£¬ÓÉÓڴ˲»µÈʽºã³ÉÁ¢£¬Åä·½¿ÉµÃb2-4ab+4a=£¨b-2a£©2+4a-4a2£¾0ºã³ÉÁ¢£¬½«´Ë²»µÈʽºã³ÉÁ¢×ª»¯Îª4a-4a2£¾0¼´¿É£®
£¨III£©ÓÉÓÚ±¾Ð¡ÌâÐèÒª¸ù¾ÝÁ½¸öµãA¡¢BµÄ×ø±êת»¯µã¹ØÓÚÏߵĶԳÆÕâÒ»Ìõ¼þ£¬¹Ê¿ÉÒÔÏÈÉè³öÁ½µãµÄ×ø±ê·Ö±ðΪA£¨x1£¬x1£©£¬B£¨x2£¬x2£©£¨x1¡Ùx2£©£¬ÓÉбÂʹ«Ê½ÇóµÃkAB=1£¬ÓÖ¶Ô³ÆÐÔÖªÖ±Ïßy=kx+µÄбÂÊk=-1½«Æä´úÈëÖ±Ïߵķ½³Ì£¬¿ÉÒԵõ½x1+x2=£¬ÓÉ´ËÁªÏëµ½¸ùÓëϵÊýµÄ¹Øϵ£¬ÓÉ£¨II£©Öª£¬x1¡¢x2Ó¦ÊÇ·½³Ìax2+bx+b-1=0µÄ¸ù£¬¹ÊÓֿɵÃx1+x2=-£¬ÖÁ´ËÌâÉèÖеÄÌõ¼þת»¯Îª-=£¬¹Û²ì·¢ÏÖ²ÎÊýb¿ÉÒÔ±íʾ³É²ÎÊýaµÄº¯Êý¼´£¬ÖÁ´Ë£¬Çó²ÎÊýbµÄÎÊÌâת»¯ÎªÇób¹ØÓÚaµÄº¯Êý×îСֵµÄÎÊÌ⣮
µãÆÀ£º±¾Ì⿼µãÊǶþ´Îº¯ÊýµÄÐÔÖÊ£¬Ö÷Òª¿¼²é¶þ´Îº¯Êý¡¢·½³ÌµÄ»ù±¾ÐÔÖÊ¡¢²»µÈʽµÄÓйØ֪ʶ£¬Í¬Ê±¿¼²éº¯Êý˼Ïë¡¢ÊýÐνáºÏ˼Ïë¡¢Âß¼­ÍÆÀíÄÜÁ¦ºÍ´´ÐÂÒâʶ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³ö¶¨Ò壺Èôº¯Êýf£¨x£©ÔÚDÉϿɵ¼£¬¼´f¡ä£¨x£©´æÔÚ£¬ÇÒµ¼º¯Êýf¡ä£¨x£©ÔÚDÉÏÒ²¿Éµ¼£¬Ôò³Æf£¨x£©ÔÚDÉÏ´æÔÚ¶þ½×µ¼º¯Êý£¬¼Çf¡å£¨x£©=£¨f¡ä£¨x£©£©¡ä£¬Èôf¡å£¨x£©£¼0ÔÚDÉϺã³ÉÁ¢£¬Ôò³Æf£¨x£©ÔÚDÉÏΪ͹º¯Êý£®ÒÔÏÂËĸöº¯ÊýÔÚ(0£¬
¦Ð
2
)
Éϲ»ÊÇ͹º¯ÊýµÄÊÇ£¨¡¡¡¡£©
A¡¢f£¨x£©=sinx+cosx
B¡¢f£¨x£©=lnx-2x
C¡¢f£¨x£©=-x3+2x-1
D¡¢f£¨x£©=-xe-x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺Èôº¯Êýf£¨x£©¶ÔÓÚÆ䶨ÒåÓòÄÚµÄijһÊýx0£¬ÓРf £¨x0£©=x0£¬Ôò³Æx0ÊÇf £¨x£©µÄÒ»¸ö²»¶¯µã£®ÒÑÖªº¯Êýf£¨x£©=ax2+£¨b+1£©x+b-1 £¨a¡Ù0£©£®
£¨¢ñ£©µ±a=1£¬b=-2ʱ£¬Çóº¯Êýf£¨x£©µÄ²»¶¯µã£»
£¨¢ò£©Èô¶ÔÈÎÒâµÄʵÊýb£¬º¯Êýf£¨x£©ºãÓÐÁ½¸ö²»¶¯µã£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Èôy=f£¨x£©Í¼ÏóÉÏÁ½¸öµãA¡¢BµÄºá×ø±êÊǺ¯Êýf£¨x£©µÄ²»¶¯µã£¬ÇÒA¡¢BÁ½µã¹ØÓÚÖ±Ïßy=kx+
a5a2-4a+1
¶Ô³Æ£¬ÇóbµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³ö¶¨Ò壺Èôº¯Êýf£¨x£©ÔÚDÉϿɵ¼£¬¼´f¡ä£¨x£©´æÔÚ£¬ÇÒµ¼º¯Êýf¡ä£¨x£©ÔÚDÉÏÒ²¿Éµ¼£¬Ôò³Æf£¨x£©ÔÚDÉÏ´æÔÚ¶þ½×µ¼º¯Êý£¬¼Çf¡å£¨x£©=[£¨f¡ä£¨x£©]¡ä£®Èôf¡±£¨x£©£¾0ÔÚDÉϺã³ÉÁ¢£¬Ôò³Æf£¨x£©ÔÚDÉÏΪ°¼º¯Êý£®ÒÔÏÂËĸöº¯ÊýÔÚ(0£¬
¦Ð
2
)
Éϲ»ÊÇ °¼º¯ÊýµÄÊÇ£¨¡¡¡¡£©
A¡¢f£¨x£©=1-sinx
B¡¢f£¨x£©=ex-2x
C¡¢f£¨x£©=x3-x2-1
D¡¢f£¨x£©=-xe-x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¹ãÖÝÄ£Ä⣩¶¨Ò壺Èôº¯Êýf£¨x£©µÄͼÏó¾­¹ý±ä»»TºóËùµÃͼÏó¶ÔÓ¦º¯ÊýµÄÖµÓòÓëf£¨x£©µÄÖµÓòÏàͬ£¬Ôò³Æ±ä»»TÊÇf£¨x£©µÄֵͬ±ä»»£®ÏÂÃæ¸ø³öËĸöº¯Êý¼°Æä¶ÔÓ¦µÄ±ä»»T£¬ÆäÖÐT²»ÊôÓÚf£¨x£©µÄֵͬ±ä»»µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³ö¶¨Ò壺Èôº¯Êýf£¨x£©ÔÚDÉϿɵ¼£¬¼´f¡ä£¨x£©´æÔÚ£¬ÇÒµ¼º¯Êýf¡ä£¨x£©ÔÚDÉÏÒ²¿Éµ¼£¬Ôò³Æf£¨x£©ÔÚDÉÏ´æÔÚ¶þ½×µ¼º¯Êý£¬¼Çf¡å£¨x£©=£¨f¡ä£¨x£©£©¡ä£®Èôf¡å£¨x£©£¼0ÔÚDÉϺã³ÉÁ¢£¬Ôò³Æf£¨x£©ÔÚDÉÏΪÉÏ͹º¯Êý£®ÒÔÏÂËĸöº¯ÊýÔÚ(0£¬
¦Ð
2
)
Éϲ»ÊÇÉÏ͹º¯ÊýµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸