精英家教网 > 高中数学 > 题目详情
13.已知正△ABC内一点D,满足∠ADC=150°.证明:由线段AD、BD、CD为边构成的三角形是直角三角形.

分析 先证△ADB≌△AEC,得出DB=EC,从而推得△DEC中三边之长就是:段AD(即DE)、线段BD(即EC)、线段CD 之长.

解答 证明:如右图,在AC边外,以AD为边作等边△ADE,连接EC,
∵△ADE为等边三角形,∴AD=AE,----------①
且∠DAB=60°-∠DAC=∠EAC,-------------②
又∵△ABC为等边三角形,∴AB=AC,--------③
∴△ADB≌△AEC,所以,DB=EC,
即△DEC中(如图阴影)三边之长就是:
线段AD(即DE)、线段BD(即EC)、线段CD 之长,
且∠EDC=∠ADC-∠ADE=150°-60°=90°,即∠EDC为直角,
因此,线段AD,BD,CD为边构成的三角形为直角三角形.

点评 本题主要考查了平面几何中的证明问题,涉及正三角形的性质和三角形全等的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某几何体三视图如右,其中左视图是边长为2的正三角形,主视图为矩形且AA1=3,D为AA1中点.
(1)求该几何体的体积;
(2)求证:平面BB1C1C⊥平面BDC1; 
(3)BC边上是否存在点P,使AP∥平面BDC1.若存在,证明该结论,不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数$y=\sqrt{3}cosx+sinx,(x∈R)$的图象向右平移θ(θ>0)个单位长度后,所得到的图象关于y轴对称,则θ的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面是边长为2的菱形,∠BAD=60°,△PAD是等边三角形,且$PB=\sqrt{6}$,M是棱PC上除P、C的任意一点,且$\frac{PM}{PC}=λ$
(1)当$λ=\frac{1}{3}$时,求证:平面BDM⊥平面ABCD
(2)平面BDM将四棱锥分成两部分,当$λ=\frac{1}{2}$,求两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知5名发热感冒患者中,有1人被H7N9禽流感病毒感染,需要通过化验血液来确定谁是H7N9禽流感患者,血液化验结果呈阳性的即为普通感冒患者,呈阴性的即为禽流感患者,下面是两种化验方案:
方案甲:逐个化验,知道能确定禽流感患者为止;
方案乙:先任选3人,将他们的血液混在一起化验,若结果呈阴性,则表明禽流感患者在他们3人之中,然后再逐个化验,直到确定禽流感患者为止;若结果呈阳性,则在另外2人中任选1人化验.
(1)求依方案乙所需化验次数恰好为2的概率;
(2)试比较两种方案,哪种方案有利于尽快查找到禽流感患者.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}满足${a_1}=2,{a_{n+1}}=a_n^2-n{a_n}+1,n∈{N^*}$.
(1)求a2,a3,a4
(2)由( 1)猜想an的一个通项公式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)为定义在R上的奇函数,且当x>0时,f(x)=-2x-1
(1)求出函数f(x)的解析式;
(2)当x∈[0,1]时,求出f(x)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.等比数列{an}中,a1+a4=20,a2+a5=40,求它的前6项和s6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集U={1,2,3,…,10},A={1,2,3,4,5},B={4,5,6,7,8},C={3,5,7,9},求 A∪B,A∩B,(CUA)∩B,A∪( B∩C).

查看答案和解析>>

同步练习册答案