精英家教网 > 高中数学 > 题目详情
将函数y=f(x)的图象向左平移1个单位,再纵坐标不变,横坐标伸长到原来的
π
3
倍,然后再向上平移1个单位,得到函数y=
3
sinx
的图象.
(1)求y=f(x)的最小正周期和单调递增区间;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,求当x∈[0,1]时,函数y=g(x)的最小值和最大值.
分析:(1)通过函数的图象的平移变换取得红丝带解析式,然后求出函数的周期,利用增函数的单调增区间求解单调递增区间;
(2)通过函数y=g(x)与y=f(x)的图象关于直线x=2对称,说明当x∈[0,1]时,y=g(x)的最值即为x∈[3,4]时,y=f(x)的最值,求解f(x)的最值,即可得到函数y=g(x)的最小值和最大值.
解答:解:(1)函数y=
3
sinx
的图象向下平移1个单位得y=
3
sinx-1
,再横坐标缩短到原来的
3
π
倍得y=
3
sin
π
3
x-1
,然后向右移1个单位得y=
3
sin(
π
3
x-
π
3
)-1
所以函数y=f(x)的最小正周期为T=
π
3
=6
2kπ-
π
2
π
3
x-
π
3
≤2kπ+
π
2
⇒6k-
1
2
≤x≤6k+
5
2
,k∈Z

函数y=f(x)的递增区间是[6k-
1
2
,6k+
5
2
],k∈Z

(2)因为函数y=g(x)与y=f(x)的图象关于直线x=2对称
∴当x∈[0,1]时,y=g(x)的最值即为x∈[3,4]时,y=f(x)的最值.
∵x∈[3,4]时,
π
3
x-
π
3
∈[
3
,π]

∴sin(
π
3
x-
π
3
∈[0,
3
2
]

∴f(x)∈[-1,
1
2
]

∴y=g(x)的最小值是-1,最大值为
1
2
点评:本题考查三角函数的解析式的求法,函数的图象的变换,三角函数的性质的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(ωx+φ)-cos(ωx+φ)
(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
π
2

(Ⅰ)求f(
π
8
)
的值;
(Ⅱ)将函数y=f(x)的图象向右平移
π
6
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=f(x)的图象沿x轴向左平移
π6
个单位,再使图象上所有的点的纵坐标不变,横坐标变为原来的2倍,得到函数y=cosx的图象,则f(x)的解析式可能是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+?)(A>0,ω>0,|?|<
π
2
)
的一段图象如图所示.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移
π
8
个单位,得到y=g(x)的图象,求直线y=
6
与函数y=
2
g(x)
的图象在(0,π)内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•杭州模拟)函数f(x)=sin(
π
3
-x),则要得到函数y=cos(x+
3
)的图象,只需将函数y=f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
3
)(ω>0),将函数y=f(x)的图象向右平移
2
3
π
个单位长度后,所得图象与原函数图象重合ω最小值等于(  )

查看答案和解析>>

同步练习册答案