精英家教网 > 高中数学 > 题目详情
(2012•福州模拟)假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X.
(Ⅰ)求X的分布列;
(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为y,求y的数学期望.
分析:(Ⅰ)由题设知X的所有可能取值为0,1,2,3,4,X~B(4,0.5),由此能求出X的分布列.
(Ⅱ)Y的所有可能取值为3,4,分别求出p(Y=3)和P(Y=4)的值,由此能求出Y的期望值E(Y).
解答:(本小题满分13分)
解:(Ⅰ)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),(1分)
∴P(X=0)=
C
0
4
(
1
2
)4
=
1
16
,P(X=1)=
C
1
4
(
1
2
)4
=
1
4

P(X=2)=
C
2
4
(
1
2
)4
=
3
8
,P(X=3)=
C
3
4
(
1
2
)4=
1
4

P(X=4)=
C
4
4
(
1
2
)4
=
1
16
,(6分)
∴X的分布列为
X 0 1 2 3 4
P
1
16
1
4
3
8
1
4
1
16
(7分)
(Ⅱ)Y的所有可能取值为3,4,则(8分)
p(Y=3)=P(X=3)=
1
4
,(9分)
P(Y=4)=1-P(Y=3)=
3
4
,(11分)
∴Y的期望值E(Y)=3×
1
4
+4×
3
4
=
15
4

答:Y的期望值E(Y)等于
15
4
.(13分)
点评:本题考查离散型随机变量的分布列和数学期望,是历年高考的必考题型之一.解题时要认真审题,仔细解答,注意概率知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福州模拟)在数列{an}中,a1=2,点(an,an+1)(n∈N*)在直线y=2x上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an,求数列
1bn×bn+1
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福州模拟)在约束条件
x≤1
y≤2
x+y-1≥0
下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于
1
8
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福州模拟)sin47°cosl3°+sinl3°sin43°的值等于
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福州模拟)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)记三棱锥P-ABD体积为V1,四棱锥P-BDEF体积为V2.求当PB取得最小值时的V1:V2值.

查看答案和解析>>

同步练习册答案