【题目】在半径为的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是________
科目:高中数学 来源: 题型:
【题目】某公司准备投产一种新产品,经测算,已知每年生产万件的该种产品所需要的总成本(万元),依据产品尺寸,产品的品质可能出现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在,,,,,,(单位:)中,经统计得到的频率分布直方图如图所示.
产品的品质情况和相应的价格(元/件)与年产量之间的函数关系如下表所示.
产品品质 | 立品尺寸的范围 | 价格与产量的函数关系式 |
优 | ||
中 | ||
差 |
以频率作为概率解决如下问题:
(1)求实数的值;
(2)当产量确定时,设不同品质的产品价格为随机变量,求随机变量的分布列;
(3)估计当年产量为何值时,该公司年利润最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.,且.
(1)求函数的单调区间;
(2)若函数与函数在公共点处有相同的切线,且在上恒成立.
(i)求和的值;(为函数的导函数)
(ii)求实数n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,,,O为AC的中点.
(1)证明:平面ABC;
(2)若点M在棱BC上,且,求点C到平面POM的距离.
(3)若点M在棱BC上,且二面角为30°,求PC与平面PAM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于具有相同定义域D的函数和,若存在函数(k,b为常数),对任给的正数m,存在相应的,使得当且时,总有,则称直线为曲线和的“分渐近线”.给出定义域均为的四组函数如下:
①,;
②,;
③,;
④,
其中,曲线和存在“分渐近线”的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度()的7组观测数据,其散点图如所示:
根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和温度的回归方程(回归系数结果精确到);
(2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括与),估计该品种一只昆虫的产卵数的范围.(参考数据:,,,,.)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,,,动点满足:直线与直线的斜率之积恒为,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)若点位于第一象限,过点,分别作直线,直线,直线,交于点.
①若点的横坐标为-1,求点的坐标;
②直线与曲线交于点,且,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com