精英家教网 > 高中数学 > 题目详情

【题目】在半径为的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是________

【答案】

【解析】

球面上两点之间最短的路径是大圆(圆心为球心)的劣弧的弧长,因此最短的路径分别是经过的各段弧长的和,利用内接正三棱锥,它的底面三个顶点恰好同在一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,经过的最短路程为:一个半圆一个圆即可解决.

由题意可知,球面上两点之间最短的路径是大圆(圆心为球心)的劣弧的弧长,内接正三棱锥,它的底面三个顶点恰好同在一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程为:一个半圆和一个圆,

即:.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司准备投产一种新产品,经测算,已知每年生产万件的该种产品所需要的总成本(万元),依据产品尺寸,产品的品质可能出现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在(单位:)中,经统计得到的频率分布直方图如图所示.

产品的品质情况和相应的价格(元/件)与年产量之间的函数关系如下表所示.

产品品质

立品尺寸的范围

价格与产量的函数关系式

以频率作为概率解决如下问题:

1)求实数的值;

2)当产量确定时,设不同品质的产品价格为随机变量,求随机变量的分布列;

3)估计当年产量为何值时,该公司年利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

1)求函数的单调区间;

2)若函数与函数在公共点处有相同的切线,且上恒成立.

i)求的值;(为函数的导函数)

ii)求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的侧棱垂直于底面,且是棱的中点.

1)证明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,则下列命题正确的是(

A.时,

B.函数3个零点

C.的解集为

D.,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,OAC的中点.

1)证明:平面ABC

2)若点M在棱BC上,且,求点C到平面POM的距离.

3)若点M在棱BC上,且二面角30°,求PC与平面PAM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于具有相同定义域D的函数,若存在函数(kb为常数),对任给的正数m,存在相应的,使得当时,总有,则称直线为曲线分渐近线.给出定义域均为的四组函数如下:

,

,

其中,曲线存在分渐近线的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,,动点满足:直线与直线的斜率之积恒为,记动点的轨迹为曲线.

1)求曲线的方程;

2)若点位于第一象限,过点分别作直线,直线,直线交于点.

①若点的横坐标为-1,求点的坐标;

②直线与曲线交于点,且,求的取值范围.

查看答案和解析>>

同步练习册答案