已知函数, .
(1)若, 函数 在其定义域是增函数,求的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
(1);(2)当时,的最小值为;当时,的最小值为;当时,的最小值为;(3)不存在点.
解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、不等式基础知识,考查函数思想、构造函数思想、分类讨论思想,考查综合分析和解决问题的能力.第一问,利用导数研究函数的单调性,转化为恒成立问题,再转化为求函数最值问题;第二问,利用配方法求最值,讨论对称轴与区间端点的大小,本问突出体现了分类讨论思想的运用;第三问,把问题坐标化,用反证法证明,利用切线平行,列出方程,构造函数,判断单调性求最值,得出矛盾.
试题解析:(1)依题意:在上是增函数,
对恒成立, 2分
∴
∵,则.
∴的取值范围为 4分
(2)设,则函数化为
∵
∴当,即时,函数在上为增函数.
当时,; 6分
当,即时,当时,;
当,即时,函数在上是减函数.
当时, 8分
综上所述,当时,的最小值为.
当时,的最小值为.
当时,的最小值为. 9分
(3)设点的坐标是且则点的横坐标为
在点处的切线斜率为
在点处的切线斜率为 10分
假设在点处的切线与在点处的切线平行,则
则 11分
则
设,则 ① 12分
令
科目:高中数学 来源: 题型:解答题
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.
(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com