【题目】将函数 的图象向左平移 个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在 的最大值为( )
A.0
B.
C.
D.1
【答案】D
【解析】解:将函数 的图象向左平移 个单位长度后, 可得函数g(x)=sin(2x+ +φ)的图象,根据所得图象关于原点对称,
可得 +φ=π,∴φ= ,f(x)=sin(2x+ ).
在 上,2x+ ∈[ , ],故当2x+ = 时,f(x)=sin(2x+ )取得最大值为1,
故选:D.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个,)表示面包的需求量,(单位:元)表示利润.
(1)求关于的函数解析式;
(2)根据直方图估计利润不少于元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各个城市的大街小巷.为了解共享单车在市的使用情况,某调研机构在该市随机抽取了位市民进行调查,得到的列联表(单位:人)
(1)根据以上数据,能否在犯错误的概率不超过的前提下认为使用共享单车的情况与年龄有关?(结果保留3位小数)
(2)现从所抽取的岁以上的市民中利用分层抽样的方法再抽取5人
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机抽取2人赠送一件礼物,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式及数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
频数 | 60 | 20 | 10 | 5 | 5 |
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且离心率
(1)求椭圆的标准方程
(2)是否存在过点的直线交椭圆与不同的两点,且满足 (其中为坐标原点)。若存在,求出直线的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线C: =1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ= ,且 |,则双曲线C的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为2:3;5,现从该学校中抽取一个容量为100的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为 ,则该学校学生的总数为( )
A.200
B.400
C.500
D.1000
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)经过点( ,1),以原点为圆心,椭圆短半轴长为半径的圆经过椭圆的焦点.
(1)求椭圆C的方程;
(2)设过点(﹣1,0)的直线l与椭圆C相交于A、B两点,试问在x轴上是否存在一个定点M,使得 恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com