精英家教网 > 高中数学 > 题目详情
如图,已知正三角形底面,其中

(I)求证:平面
(II)求四棱的体积
(III)求与底面所成角的余弦值(文科)
求二面角的余弦值(理科)

(1)∵
平面
平面
//平面……3分
(2)
中点,连接
是正三角形

又∵平面底面
平面
平面底面
底面
……6分
(3)(文科)
底面
就是直线与底面所成角


……10分
(理科)
,连接
底面

平面
平面

就是所求二面角的一个平面角

……10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

. (本小题满分12分)
如图,四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,已知AB=,∠APB=∠ADB=60°

(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)求PH与平面PAD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥S—ABC中,SA⊥底面ABCSA=4,AB=3,DAB的中点∠ABC=90°,则
点D到面SBC的距离等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,在四棱锥中,底面是矩形,平面分别是的中点.
(1)证明:平面
(2)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三条射线PA,PB,PC满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C 的度数                                                                             
A.等于90°B.是小于120°的钝角
C.是大于等于120°小于等于135°的钝角D.是大于135°小于等于150°的钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正的中线与中位线相交,
已知旋转过程中的一个
图形(不与重合).现给出下列四个命题:
①动点在平面上的射影在线段上;
②平面平面;                                                      
③三棱锥的体积有最大值;
④异面直线不可能垂直.其中正确的命题的序号是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、圆台上底半径为5cm,下底半径为10cm,母线AB=20cm,A在上底面上,B在下底面上,从AB中点M拉一条绳子,绕圆台侧面一周到B点,则绳子最短时长为_      ___

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两条不同直线,两个不同平面,给出下列命题:
①若垂直于内的两条相交直线,则
②若,则平行于内的所有直线;
③若,则
④若,则
⑤若,则
其中正确命题的序号是          .(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案