精英家教网 > 高中数学 > 题目详情

【题目】如图,点在抛物线外,过点作抛物线的两切线,设两切点分别为,记线段的中点为.

(Ⅰ)求切线的方程;

(Ⅱ)证明:线段的中点在抛物线上;

(Ⅲ)设点为圆上的点,当取最大值时,求点的纵坐标.

【答案】(Ⅰ)切线的方程为,切线的方程为.

(Ⅱ)见证明;(Ⅲ)

【解析】

(Ⅰ)结合导数的几何意义可得切线的方程;(Ⅱ)由(1)可得,故.再结合M点的坐标即可明确在抛物线上;(Ⅲ)由题意可得. 设,则.结合均值不等式即可得到结果.

(Ⅰ)切线的方程为,即

同理可得,切线的方程为.

(另解:设切线的方程为:

消去后可得:

∴切线的方程为,即

同理可得,切线的方程为.

(Ⅱ)因为点既在切线上,也在切线上,

由(1)可得,故.

又点的坐标为.

所以点的纵坐标为

即点的坐标为.故在抛物线上.

(Ⅲ)由(Ⅰ)知:

,所以 .

,则.

时,即当时,取最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个获得利润元,未售出的每个亏损元.根据以往天的资料统计,得到如下需求量表.元日这天,此蛋糕店制作了这款蛋糕个.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天出售这款蛋糕获得的利润.

需求量/个

天数

15

25

30

20

10

(1)当时,若时获得的利润为 时获得的利润为,试比较的大小;

(2)当时,根据上表,从利润不少于元的天数中,按需求量分层抽样抽取天,

(ⅰ)求这天中利润为元的天数;

(ⅱ)再从这天中抽取天做进一步分析,设这天中利润为元的天数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区对一种新品种小麦在一块试验田进行试种.从试验田中抽取株小麦,测量这些小麦的生长指标值,由测量结果得如下频数分布表:

生长指标值分组

频数

(1)在相应位置上作出这些数据的频率分布直方图;

(2)求这株小麦生长指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(3)由直方图可以认为,这种小麦的生长指标值服从正态分布,其中近似为样本平均数 近似为样本方差.

①利用该正态分布,求

②若从试验田中抽取株小麦,记表示这株小麦中生长指标值位于区间的小麦株数,利用①的结果,求.

附: .

,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面为直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为正三角形,M是棱PC上的一点(异于端点).

(1)若M为PC的中点,求证:PA∥平面BME;

(2)是否存在点M,使二面角MBED的大小为30°.若存在,求出点M的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;

(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=ln x+x2-ax(a为常数).

(1)若x=1是函数f (x)的一个极值点,求a的值;

(2)当0<a≤2时,试判断f (x)的单调性;

(3)若对任意的a∈(1,2),x0∈[1,2],不等式f (x0)>mln a 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)

22019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为

(1)求直线和曲线的直角坐标方程;

(2)设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数内的单调性;

(Ⅱ)若存在正数,对于任意的,不等式恒成立,求正实数的取值范围.

查看答案和解析>>

同步练习册答案