【题目】如图,点在抛物线外,过点作抛物线的两切线,设两切点分别为,,记线段的中点为.
(Ⅰ)求切线,的方程;
(Ⅱ)证明:线段的中点在抛物线上;
(Ⅲ)设点为圆上的点,当取最大值时,求点的纵坐标.
科目:高中数学 来源: 题型:
【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个获得利润元,未售出的每个亏损元.根据以往天的资料统计,得到如下需求量表.元日这天,此蛋糕店制作了这款蛋糕个.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天出售这款蛋糕获得的利润.
需求量/个 | |||||
天数 | 15 | 25 | 30 | 20 | 10 |
(1)当时,若时获得的利润为, 时获得的利润为,试比较和的大小;
(2)当时,根据上表,从利润不少于元的天数中,按需求量分层抽样抽取天,
(ⅰ)求这天中利润为元的天数;
(ⅱ)再从这天中抽取天做进一步分析,设这天中利润为元的天数为,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区对一种新品种小麦在一块试验田进行试种.从试验田中抽取株小麦,测量这些小麦的生长指标值,由测量结果得如下频数分布表:
生长指标值分组 | |||||||
频数 |
(1)在相应位置上作出这些数据的频率分布直方图;
(2)求这株小麦生长指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(3)由直方图可以认为,这种小麦的生长指标值服从正态分布,其中近似为样本平均数, 近似为样本方差.
①利用该正态分布,求;
②若从试验田中抽取株小麦,记表示这株小麦中生长指标值位于区间的小麦株数,利用①的结果,求.
附: .
若,则,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面为直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为正三角形,M是棱PC上的一点(异于端点).
(1)若M为PC的中点,求证:PA∥平面BME;
(2)是否存在点M,使二面角MBED的大小为30°.若存在,求出点M的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;
(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ln x+x2-ax(a为常数).
(1)若x=1是函数f (x)的一个极值点,求a的值;
(2)当0<a≤2时,试判断f (x)的单调性;
(3)若对任意的a∈(1,2),x0∈[1,2],不等式f (x0)>mln a 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.
(1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)
(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为.
(1)求直线和曲线的直角坐标方程;
(2)设点是曲线上的一个动点,求它到直线的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com