精英家教网 > 高中数学 > 题目详情

若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.

(1)求函数的解析式;

(2)若关于x的方程f(x)=k有三个零点,求实数k的取值范围。

【解析】由题意可知f′(x)=3ax2-b,

(1)于是

故所求的解析式为f(x)=x3-4x+4.

(2)由(1)可知f′(x)=x2-4=(x-2)(x+2),

令f′(x)=0,得x=2,或x=-2.

当x变化时f′(x)、f(x)的变化情况如下表所示:

X

(-∞,-2)

-2

(-2,2)

2

(2,+∞)

f′(x)

0

0

f(x)

单调递增

 

单调递减

单调递增

因此,当x=-2时,f(x)有极大值

当x=2时,f(x)有极小值-.

所以函数的大致图象如图.故实数k的取值范围是-<k<.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=ax+b(a0)有一个零点是-2,则函数g(x)=bx2-ax的零点是(     )

A.2,0 B.2,      C.0,      D.0,

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=axxa(a>0,a≠1)有两个零点,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是    

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax(a∈R),则下列结论正确的是(  )

A.∀a∈R,函数f(x)在(0,+∞)上是增函数

B.∀a∈R,函数f(x)在(0,+∞)上是减函数

C.∃a∈R,函数f(x)为奇函数

D.∃a∈R,函数f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=________.

查看答案和解析>>

同步练习册答案