【题目】已知函数
(1)若,且在上单调递增,求实数的取值范围
(2)是否存在实数,使得函数在上的最小值为?若存在,求出实数的值;若不存在,请说明理由.
【答案】(1);(2)实数是存在的,且.
【解析】试题分析:(1)首先对函数求导,由已知在时恒成立,得,又由,即可求解正实数的取值范围;(2)利用反证法,假设存在这样的实数,则在时恒成立,可得,利用导数判断函数,即可求解参数的取值.
试题解析:(1),由已知在时恒成立,即恒成立,分离参数得,又,所以正实数的取值范围为.
(2)假设存在这样的实数,则在时恒成立,且可以取到等号,故,即,故,解得,从而这样的实数必须为正实数.
当时,由(1)知在上递增,所以,此时不合题意.故这样的必须满足,此时,令,得的增区间为;令,得的减区间为.故,
整理得,即,设,则上式即为,构造,则等价于,由于为增函数,为减函数,故为增函数,观察知,故等价于,与之对应的,综上符合条件的实数是存在的,即.
科目:高中数学 来源: 题型:
【题目】(本小题满分为14分)已知定义域为R的函数是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为实数).
(1)当时,求函数的图象在点处的切线方程;
(2)设函数(其中为常数),若函数在区间上不存在极值,且存在满
足,求的取值范围;
(3)已知,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆与圆:,圆都相内切,即圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于,两个不同的点.
(1)求曲线的方程;
(2)试探究和的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数是定义在上的函数,并且满足下面三个条件:①对任意正数,都有;②当时, ;③.
(1)求, 的值;
(2)证明在上是减函数;
(3)如果不等式成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】重庆市乘坐出租车的收费办法如下:
⑴不超过3千米的里程收费10元; ⑵超过3千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费); 当车程超过3千米时,另收燃油附加费1元. |
相应系统收费的程序框图如图所示,其中(单位:千米)为行驶里程,(单位:元)为所收费用,用表示不大于的最大整数,则图中①处应填( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:
甲是中国人,还会说英语.
乙是法国人,还会说日语.
丙是英国人,还会说法语.
丁是日本人,还会说汉语.
戊是法国人,还会说德语.
则这五位代表的座位顺序应为( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某汽车品牌一个月内被消费者投诉的次数用表示,据统计,随机变量的概率分布如下:
(1)求的值;
(2)假设一月与二月被消费者投诉的次数互不影响,求该汽车品牌在这两个月内被消费者投诉次的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com