精英家教网 > 高中数学 > 题目详情
7.已知sin30°=$\frac{1}{2}$,sinx=-$\frac{1}{2}$,求出x的解集.

分析 由题意和诱导公式可得sin(-30°)=sin(-150°)=-$\frac{1}{2}$,由终边相同的角的集合可得.

解答 解:∵sin30°=$\frac{1}{2}$,∴由诱导公式可得sin(-30°)=sin(-150°)=-$\frac{1}{2}$,
∴sinx=-$\frac{1}{2}$的解集为{x|x=k•360°-30°或k•360°-150°,k∈Z}

点评 本题考查三角函数诱导公式,涉及终边相同的角的集合,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=sin(2x-$\frac{π}{3}$)(x∈R)的图象为C,以下结论正确的是①②.(写出所有正确结论的编号)
①图象C关于直线x=$\frac{11π}{12}$对称;
②图象C关于点($\frac{2π}{3}$,0)对称;
③函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{2}$)内是增函数;
④由y=sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知平行六面体ABCD-A1B1C1D1,M为A1C1与B1D1的交点,化简下列向量表达式:
(1)$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{B}_{1}}$;
(2)$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{A{{\;}_{1}D}_{1}}$;
(3)$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{D}_{1}}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C}_{1}}$+$\overrightarrow{{C}_{1}{A}_{1}}$+$\overrightarrow{{A}_{1}A}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=2sin(x-$\frac{π}{3}$),x∈[-π,0]的单调增区间为[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=sin(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$]的值域是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x+$\frac{1}{{e}^{-x}}$,若直线:y=kx与曲线y=f(x)相切,则k=1+e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,O为坐标原点,若线段OA的中垂线与直线y=x的交点P恰在椭圆C上,且△OAP的面积为3.
(1)求椭圆C的方程;
(2)设直线1:y=kx+m与椭圆C交于M、N两点,点B为椭圆C的上顶点,若△BMN是以MN为底边的等腰三角形,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{{x}^{2}+x-5}{x-2}$,x∈(2,+∞)的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α∈(0,$\frac{π}{2}$),且4tan(2π+α)+3sin(6π+β)-10=0,-2tan(-α)-12sin(-β)+2=0,则tanα的值为(  )
A.-3B.3C.±3D.不确定

查看答案和解析>>

同步练习册答案