精英家教网 > 高中数学 > 题目详情
10.(1)已知函数f(x)=2x+2sinx+cosx在点(α,f(α))处的切线的斜率为2,求$\frac{sin(π-α)+cos(-α)}{{2cos(\frac{π}{2}-α)+cos(2π-α)}}$的值
(2)设△ABC的内角A、B、C所对的边分别为a,b,c,若a=1,且$acosC+\frac{1}{2}c=b$,求△ABC的周长l的取值范围.

分析 (1)求导,由导数的几何意义,求得tanα=2,由诱导公式即可求得答案;
(2)由正弦定理代入$acosC+\frac{1}{2}c=b$,整理求得A,由正弦定理得:表示出△ABC的周长l,利用正弦函数的图象及性质即可求得△ABC的周长l的取值范围.

解答 解:(1)∵f′(x)=2+2cosx-sinx,f′(α)=2,
即tanα=2,
∴$\frac{sin(π-α)+cos(-α)}{{2cos(\frac{π}{2}-α)+cos(2π-α)}}=\frac{sinα+cosα}{2sinα+cosα}=\frac{tanα+1}{2tanα+1}=\frac{3}{5}$,
∴$\frac{sin(π-α)+cos(-α)}{{2cos(\frac{π}{2}-α)+cos(2π-α)}}$的值$\frac{3}{5}$;…(5分)
(2)由正弦定理可知:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R,
则a=2RsinA,b=2RsinB,c=2RsinC,
由$acosC+\frac{1}{2}c=b$,则sinAcosC+$\frac{1}{2}$sinC=sinB,
∴$sinAcosC+\frac{1}{2}sinC=sin(A+C)=sinAcosC+cosAsinC$,
∴$\frac{1}{2}sinC=cosAsinC$,
∵C∈(0,π),∴sinC≠0,
∴$cosA=\frac{1}{2}$,又0<A<π,
∴$A=\frac{π}{3}$…(8分)
由正弦定理得:$b=\frac{asinB}{sinA}=\frac{2}{{\sqrt{3}}}sinB$,
$c=\frac{2}{{\sqrt{3}}}sinC$∴$l=a+b+c=1+\frac{2}{{\sqrt{3}}}(sinB+sinC)$,
=$1+\frac{2}{{\sqrt{3}}}[sinB+sin(A+B)]$,
=$1+2(\frac{{\sqrt{3}}}{2}sinB$$+\frac{1}{2}cosB)$,
=$1+2sin(B+\frac{π}{6})$…(10分)
∵$A=\frac{π}{3}$,
∴$B∈(0,\frac{2π}{3})$,
∴$B+\frac{π}{6}∈(\frac{π}{6},\frac{5π}{6})$,
∴$sin(B+\frac{π}{6})∈(\frac{1}{2},1]$  …(11分)
∴△ABC的周长l的取值范围(2,3]…(12分)

点评 本题考查诱导公式,正弦定理,正弦函数的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列关于幂函数y=xα(α∈Q)的论述中,正确的是(  )
A.当α=0时,幂函数的图象是一条直线
B.幂函数的图象都经过(0,0)和(1,1)两个点
C.若函数f(x)为奇函数,则f(x)在定义域内是增函数
D.幂函数f(x)的图象不可能在第四象限内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α的终边经过点(m,9),且$tanα=\frac{3}{4}$,则sinα的值为(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛.下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.
羊毛颜色每匹需要/kg供应量/kg
布料A布料B
331050
绿421200
261800
已知生产每匹布料A、B的利润分别为60元、40元.分别用x、y表示每月生产布料A、B的匹数.
(Ⅰ)用x、y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)如何安排生产才能使得利润最大?并求出最大的利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD中点.
(Ⅰ)求证:EN∥平面PCD;
(Ⅱ)求证:BC⊥平面PEB;
(Ⅲ)求三棱锥M-PBE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在?ABCD中,E是CD上一点,且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$,AB=2BC=4,∠BAD=60°,则$\overrightarrow{AC}$•$\overrightarrow{EB}$等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,点P是圆O:x2+y2=4上一点,圆O在点P处的切线为m,PQ垂直x轴于点Q(P、Q不重合),线段PQ的重点为E,点A(-2,0),直线l:x=2与直线m交于点M.
(1)若点P(1,$\sqrt{3}$),求直线m的方程;
(2)当P在圆O上运动时,证明A,E,M三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC中,角A,B,C所对的边分别为a,b,c,且满足3bcosC=3a-c,则cosB=(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(x3+x)3(-7+$\frac{1}{{x}^{2}}$)的展开式x3中的系数为(  )
A.3B.-4C.4D.-7

查看答案和解析>>

同步练习册答案