【题目】已知函数(为自然对数的底数).
(1)求函数的极值;
(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.
【答案】(1) ①当时,函数无极值.②当时,函数有极小值为,无极大值;(2)存在,
【解析】
(1)对函数求导,根据的不同取值范围,进行分类讨论,求出函数的极值;
(2)根据的不同取值范围,进行分类讨论,结合、函数的极值的大小、(1)中的结论,最后求出的取值范围.
解:(1)因为,所以.
①当时,,
所以时,,所以函数在上单调递减.
此时,函数无极值.
②当时,令,得,
当时,,所以函数在上单调递减;
当时,,所以函数在上单调递增.
此时,函数有极小值为,无极大值.
(2)存在实数,使得有两个相异零点.
由(1)知:①当时,函数在上单调递减;
又,所以此时函数仅有一个零点;
②当时,.
因为,则由(1)知;
取,令,
易得,所以在单调递减,
所以,所以.
此时,函数在上也有一个零点.
所以,当时,函数有两个相异零点.
③当时,,,
此时函数仅有一个零点.
④当时,,因为,则由(1)知;
令函数,易得,
所以,所以,即.
又,所以函数在上也有一个零点,
所以,当时,函数有两个相异零点.
综上所述,当时,函数有两个相异零点.
科目:高中数学 来源: 题型:
【题目】中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:
①对于任意一个圆,其“优美函数”有无数个;
②函数可以是某个圆的“优美函数”;
③正弦函数可以同时是无数个圆的“优美函数”;
④函数是“优美函数”的充要条件为函数的图象是中心对称图形.
A.①④B.①③④C.②③D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正整数12分解成两个正整数的乘积有,,三种,其中是这三种分解中,两数差的绝对值最小的,我们称为12的最佳分解.当是正整数的最佳分解时,我们规定函数,例如.关于函数有下列叙述:①,②,③,④.其中正确的序号为 (填入所有正确的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面ABCD是直角梯形,AD//BC,,E为CD的中点,
(1)证明:平面PBD平面ABCD;
(2)若,PC与平面ABCD所成的角为,试问“在侧面PCD内是否存在一点N,使得平面PCD?”若存在,求出点N到平面ABCD的距离;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对定义城内的每一个值,在其定义域内都存在唯一的,使得成立,则称该函数为“函数”.
(1)判断函数是否为“函数”,并说明理由;
(2)若函数在定义域上为“函数”,求的取值范围;
(3)已知函数在定义域上为“函数”.若存在实数,使得对任意的,不等式都成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学研究曲线的性质,得到如下结论:①的取值范围是;②曲线是轴对称图形;③曲线上的点到坐标原点的距离的最小值为. 其中正确的结论序号为( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com