精英家教网 > 高中数学 > 题目详情
8.如图,在几何体ABCDE中,四边形ABCD是正方形,△BCE是正三角形,AB⊥平面BCE,F,G分别是线段CD,BE的中点.
(Ⅰ)求证:直线FG∥平面ADE;
(Ⅱ)若AB=2,求三棱锥A-DEG的体积.

分析 (Ⅰ)取AE的中点H,连接HG,HD,通过证明四边形HGFD是平行四边形来证明GF∥DH,由线面平行的判定定理可得;
(Ⅱ)利用等体积转换,即可求三棱锥A-DEG的体积.

解答 (Ⅰ)证明:如图,取AE的中点H,连接HG,HD
∵G是BE的中点,∴GH∥AB,且GH=$\frac{1}{2}$AB,
又∵F是CD中点,四边形ABCD是正方形,
∴DF∥AB,且DF=$\frac{1}{2}$AB,即GH∥DF,且GH=DF,
∴四边形HGFD是平行四边形,∴GF∥DH,
又∵DH?平面ADE,GF?平面ADE,∴GF∥平面ADE.
(Ⅱ)解:连接CG,
∵AB⊥平面BCE,CG?面BCE,
∴AB⊥CG,
∵△BCE是正三角形,G是线段BE的中点,
∴CG⊥BE,
∵AB∩BE=B,
∴CG⊥平面ABE,
∵△BCE是正三角形,AB=2,
∴CG=$\sqrt{3}$,
∵CD∥AB,AB?平面ABE,CD?平面ABE,
∴CD∥平面ABE,
∴D到平面AEG的距离等于CG,即$\sqrt{3}$
∴三棱锥A-DEG的体积=$\frac{1}{3}×\frac{1}{2}×1×2×\sqrt{3}$=$\frac{\sqrt{3}}{3}$.

点评 本题考查空间线面位置关系,考查三棱锥体积的计算,考查空间想象能力、推理论证能力、运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.高二某班班会选出包含甲、乙、丙的5名学生发言,要求甲、乙两人的发言顺序必须相邻,而乙、丙两人的发言顺序不能相邻,那么不同的发言顺序共有(  )
A.48种B.36种C.24种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式中,值为$\frac{1}{2}$的是(  )
A.sin15°cos15°B.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$
C.cos12°sin42°-sin12°cos42°D.$\frac{{2tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a>1,b>1”是“a+b>2”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数x,y满足$\left\{\begin{array}{l}{x+4y≥0}\\{x-4y+4≥0}\\{x-2y≤0}\end{array}\right.$,则3x-2y的取值范围是(-7,10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.虚数的平方是(  )
A.正实数B.虚数C.负实数D.虚数或负实数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆C1:x2+y2=9与圆C2:(x+3)2+(y+4)2=16的位置关系是(  )
A.内切B.相交C.外切D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知P是双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一点,M是圆(x+5)2+y2=1上任意一点,设P到双曲线的渐近线的距离为d,则d+|PM|的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列选项中,与其他三个选项所蕴含的数学推理不同的是(  )
A.独脚难行,孤掌难鸣B.前人栽树,后人乘凉
C.物以类聚,人以群分D.飘风不终朝,骤雨不终日

查看答案和解析>>

同步练习册答案