【题目】已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.
(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)= 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
【答案】
(1)解:平移后图象对应的函数解析式为y=(x+1)3﹣3(x+1)2+2,整理得y=x3﹣3x,
由于函数y=x3﹣3x是奇函数,由题设真命题知,函数g(x)图象对称中心的坐标是(1,﹣2).
(2)解:设h(x)= 的对称中心为P(a,b),
由题设知函数h(x+a)﹣b是奇函数.
设f(x)=h(x+a)﹣b,则f(x)= ﹣b,
即f(x)= .
由不等式 的解集关于原点对称,则﹣a+(4﹣a)=0,得a=2.
此时f(x)= ﹣b,x∈(﹣2,2).
任取x∈(﹣2,2),由f(﹣x)+f(x)=0,得b=1,
所以函数h(x)= 图象对称中心的坐标是(2,1).
(3)解:此命题是假命题.
举反例说明:函数f(x)=x的图象关于直线y=﹣x成轴对称图象,
但是对任意实数a和b,函数y=f(x+a)﹣b,即y=x+a﹣b总不是偶函数.
修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.
【解析】(1)先写出平移后图象对应的函数解析式为y=(x+1)3﹣3(x+1)2+2,整理得y=x3﹣3x,由于函数y=x3﹣3x是奇函数,利用题设真命题知,函数g(x)图象对称中心.(2)设h(x)= 的对称中心为P(a,b),由题设知函数h(x+a)﹣b是奇函数,从而求出a,b的值,即可得出图象对称中心的坐标.(3)此命题是假命题.举反例说明:函数f(x)=x的图象关于直线y=﹣x成轴对称图象,但是对任意实数a和b,函数y=f(x+a)﹣b,即y=x+a﹣b总不是偶函数.修改后的真命题:“函数y=f(x)的图象关于直线x=a成轴对称图象”的充要条件是“函数y=f(x+a)是偶函数”.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系,以及对函数单调性的判断方法的理解,了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.
科目:高中数学 来源: 题型:
【题目】节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线C1: ,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1 , C2都有公共点,则称P为“C1﹣C2型点”
(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;
(3)求证:圆x2+y2= 内的点都不是“C1﹣C2型点”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某校有一块形如直角三角形ABC的空地,其中∠B为直角,AB长40米,BC长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个口袋有个白球,个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为,,,的抽屉内.
(1)求编号为的抽屉内放黑球的概率;
(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中错误的是( )
A. 若两个平面平行,则分别位于这两个平面的直线也互相平行
B. 平行于同一个平面的两个平面平行;
C. 平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行
D. 若两个平面平行,则其中一个平面内的直线平行于另一个平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,点,分别为椭圆的左右顶点,点在上,且面积的最大值为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为的左焦点,点在直线上,过作的垂线交椭圆于,两点.证明:直线平分线段.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com