精英家教网 > 高中数学 > 题目详情
3.sin(-$\frac{9π}{2}$)的值为(  )
A.1B.-1C.0D.$\frac{\sqrt{2}}{2}$

分析 根据正弦函数为奇函数,利用奇函数的性质化简原式,变形后利用诱导公式及特殊角的三角函数值计算即可得到结果.

解答 解:sin(-$\frac{9π}{2}$)=-sin$\frac{9π}{2}$=-sin(4π+$\frac{π}{2}$)=-sin$\frac{π}{2}$=-1,
故选:B.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知角A为锐角,则f(A)=$\frac{[cos(π-2A)-1]sin(π+\frac{A}{2})sin(\frac{π}{2}-\frac{A}{2})}{si{n}^{2}(\frac{π}{2}-\frac{A}{2})-si{n}^{2}(π-\frac{A}{2})}$+cos2A的最大值为(  )
A.$\frac{\sqrt{2}+1}{2}$B.$\frac{\sqrt{2}-1}{2}$C.$\frac{\sqrt{3}-1}{4}$D.$\frac{\sqrt{3}+1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知扇形的半径为3cm,圆心角为2弧度,则扇形的面积为9cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.sin(-435°)的值等于$-\frac{\sqrt{2}+\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的左焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴正半轴上,那么以线段F1P为直径的圆的标准方程为x2+(y-$\frac{3}{2}$)2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.先把函数y=cosx的图象上所有点向右平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的函数图象的解析式为(  )
A.y=cos(2x+$\frac{π}{3}$)B.y=cos(2x-$\frac{π}{3}$)C.y=cos($\frac{1}{2}$x+$\frac{π}{3}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,双曲线x2-y2=1的渐近线方程是y=±x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2+ax+b,a,b∈R,A={x|f(x)=x,x∈R},B={x|f[f(x)]=x,x∈R}
(1)写出集合A与B之间的关系,并证明;
(2)当A={-1,3}时,用列举法表示集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:p:y=-(21+8m-m2x为减函数,q:x2-2x+1-m2≤0(m>0),若?p是?q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案