精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式+数学公式=1(a>b>0)经过点A(1,数学公式),且离心率e=数学公式
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

解:(Ⅰ)由已知e==,即c2=a2,b2=a2-c2=a2

∵椭圆C:+=1(a>b>0)经过点A(1,),

∴a2=2,∴b2=1,
∴椭圆C的方程为+y2=1.
(Ⅱ)因为直线l经过椭圆内的点B(-1,0),所以直线l与椭圆恒有两个不同的交点M,N.
当直线l的斜率不存在时,其方程是:x=-1,代入+y2=1得y=±,可知M(-1,),N(-1,
∴以MN为直径的圆不经过坐标原点O
当直线l的斜率存在时,设方程是y=k(x+1),M(x1,y1),N(x2,y2
,可得(1+4k2)x2+8k2x+4k2-4=0
∴x1+x2=,x1•x2=
因为以MN为直径的圆经过坐标原点O,所以=0.
可得x1x2+y1y2=x1x2+k(x1+1)•k(x2+1)=(1+k2)x1x2+k2(x1+x2)+k2=0.
∴(1+k2)×+k2×+k2=0.
∴k=±2
综上所述,过点B(-1,0)能作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O,
方程为y=2x+2或y=-2x-2.
分析:(Ⅰ)根据椭圆C:+=1(a>b>0)经过点A(1,),且离心率e=,结合b2=a2-c2,即可求得椭圆C的方程;
(Ⅱ)因为直线l经过椭圆内的点B(-1,0),所以直线l与椭圆恒有两个不同的交点M,N.当直线l的斜率不存在时,其方程是:x=-1,以MN为直径的圆不经过坐标原点O
当直线l的斜率存在时,设方程是y=k(x+1),将直线方程与椭圆方程联立,利用以MN为直径的圆经过坐标原点O,所以=0,即可求得结论.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查向量知识的运用,解题的关键是利用以MN为直径的圆经过坐标原点O时,=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:+y2=1,则与椭圆C关于直线y=x成轴对称的曲线的方程是____________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案