【题目】如图,已知直线关于直线对称的直线为,直线与椭圆分别交于点、和、,记直线的斜率为.
(Ⅰ)求的值;
(Ⅱ)当变化时,试问直线是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.
【答案】(Ⅰ)1;(Ⅱ).
【解析】试题分析:(Ⅰ)可以设直线的方程为,再设直线上任意一点关于直线对称点为,于是分别表示出,由直线对称性可知, 所在直线与垂直,且中点在上,于是整理得出的值;(Ⅱ)本问考查椭圆中直线过定点问题,设,将AM方程与椭圆方程联立,可以求出点M的坐标,同理将直线AN方程与椭圆方程联立,可以求出点N的坐标,根据M,N两点坐标,可以求出直线MN的方程,从而判定直线MN是否过定点.
试题解析:(Ⅰ)设直线上任意一点关于直线对称点为
直线与直线的交点为,∴
,由
得……..①
由得…….②,
由①②得
.
(Ⅱ)设点,由得,
∴,∴.
同理: ,
,∴
即:
∴当变化时,直线过定点.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右焦点为,左,右顶点为,过点的
直线分别交椭圆于点.
(1)设动点,满足,求点的轨迹方程;
(2)当时,求点的坐标;
(3)设,求证:直线过轴上的定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:
分组(岁) | 频数 |
合计 |
(1)求频率分布表中、的值,并补全频率分布直方图;
(2)在抽取的这名市民中,按年龄进行分层抽样,抽取人参加国产手机用户体验问卷调查,现从这人中随机选取人各赠送精美礼品一份,设这名市民中年龄在内的人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 为的中点,如图 2.
(1)求证: 平面;
(2)求证: 平面;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x﹣4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等边三角形,DA=AB=2,BC=AD,E是线段AB的中点.
(I)求证:PE⊥CD;
(II)求PC与平面PDE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过变换后得曲线.
(1)求的方程;
(2)若为曲线上两点, 为坐标原点,直线的斜率分别为且,求直线被圆截得弦长的最大值及此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com