精英家教网 > 高中数学 > 题目详情
已知函数f(x)的图象与函数y=ax-1,(a>1)的图象关于直线y=x对称,g(x)=loga(x2-3x+3)(a>1).
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,n](m>-1)上的值域为,求实数p的取值范围;
(3)设函数F(x)=af(x)-g(x)(a>1),若w≥F(x)对一切x∈(-1,+∞)恒成立,求实数w的取值范围.
【答案】分析:(1)根据函数f(x)的图象与函数 y=ax的图象关于直线y=x对称可知两函数互为反函数,从而求出函数f(x)的解析式;
(2)根据函数的单调性建立等式关系,x2-3x+3=p+3x在( ,+∞)有两个不等的根,从而求出p的范围;
另解:可转化为函数y=x2+x,x∈(-1,0)∪(0,+∞)图象与函数y=p的图象有两个交点问题,数形结合求解
(3)先求出函数F(x)的最大值,若w≥F(x)对一切x∈(-1,+∞)恒成立,转化为w≥F(x)max
解答:(本题满分18分)
解:(文科)(1)由已知得 f(x)=loga(x+1);                          (4分)
(2)∵a>1,∴f(x)在(-1,+∞)上为单调递增函数,(6分)∴在区间[m,n](m>-1),
.∴m,n是方程
即方程x2+x-p=0,x∈(-1,0)∪(0,+∞)的两个相异的解,(8分)
这等价于,(10分)    解得为所求.(12分)
另解:可转化为函数y=x2+x,x∈(-1,0)∪(0,+∞)图象与函数y=p的图象有两个交点问题,数形结合求得:
(3)(14分)∵,当且仅当时等号成立,∴,(16分)∴,∵w≥F(x)恒成立,∴w≥F(x)max,所以为所求.(18分)
点评:题主要考查了函数解析式的求解,以及函数的值域和列举法,同时考查了分析问题,解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象有且仅有由五个点构成,它们分别为(1,2),(2,3),(3,3),(4,2),(5,2),则f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,2an+1=
2n,n为奇数
f(an),n为偶数

(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于原点对称,且当x<0时,f(x)=2x-4,那么当x>0时,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知函数f(x)的图象过点(
π
4
,-
1
2
),它的导函数f′(x)=Acos(ωx+φ)(x∈R)的图象的一部分如图所示,其中A>0,ω>0,|φ|<
π
2
,为了得到函
数f(x)的图象,只要将函数y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步练习册答案