精英家教网 > 高中数学 > 题目详情

【题目】已知函数的值域是,有下列结论:①当时, ②当时,;③当时, ④当时,.其中结论正确的所有的序号是( )

A.①②B.③④C.②③D.②④

【答案】C

【解析】

根据函数函数的单调性及分段函数的定义,画出函数图象,根据图象即可求得答案.

解:当x1时,x10fx)=22x+1323x3,单调递减,

当﹣1x1时,fx)=22+x1321+x3,单调递增,

在(﹣11)单调递增,在(1+∞)单调递减,

∴当x1时,取最大值为1

∴绘出的图象,如图下方曲线:

n0时,fx

由函数图象可知:

要使fx)的值域是[11]

m12];故错误;

时,fx

fx)在[1]单调递增,fx)的最大值为1,最小值为﹣1

;故正确;

时,m[12];故正确,错误,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面有五个命题:

①函数的最小正周期是

②终边在轴上的角的集合是

③在同一坐标系中,函数的图象和函数的图象有三个公共点;

④把函数的图象向右平移个单位得到的图象;

⑤函数上是减函数;

其中真命题的序号是(  )

A.①②⑤B.①④C.③⑤D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线Cy2=2pxP0)的焦点,过F垂直于x轴的直线被C截得的弦的长度为4

1)求抛物线C的方程.

2)过点(m0),且斜率为1的直线被抛物线C截得的弦为AB,若点F在以AB为直径的圆内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的表格填上数字,设在第i行第j列所组成的数字为,则表格中共有51的填表方法种数为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数,且不同时成立),使得恒成立,则称函数映像函数”.

1)判断函数是否是映像函数,如果是,请求出相应的的值,若不是,请说明理由;

2)已知函数是定义在上的映像函数,且当时,.求函数)的反函数;

3)在(2)的条件下,试构造一个数列,使得当时,,并求时,函数的解析式,及的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列四个判断:

1的值域是

2的图像是轴对称图形;

3的图像是中心对称图形;

4)方程有解.

其中正确的判断有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府为了帮助当地农民脱贫致富,开发了一种新型水果类食品,该食品生产成本为每件8.当天生产当天销售时,销售价为每件12元,当天未卖出的则只能卖给水果罐头厂,每件只能卖5.每天的销售量与当天的气温有关,根据市场调查,若气温不低于,则销售5000件;若气温位于,则销售3500件;若气温低于,则销售2000.为制定今年8月份的生产计划,统计了前三年8月份的气温范围数据,得到下面的频数分布表:

气温范围

(单位:)

天数

4

14

36

21

15

以气温范围位于各区间的频率代替气温范围位于该区间的概率.

(1)求今年8月份这种食品一天销售量(单位:件)的分布列和数学期望值;

(2)设8月份一天销售这种食品的利润为(单位:元),当8月份这种食品一天生产量(单位:件)为多少时,的数学期望值最大,最大值为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右顶点分别为AB,双曲线AB为顶点,焦距为,点P上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为为坐标原点.

(1)求双曲线的方程;

(2)求点M的纵坐标的取值范围;

(3)是否存在定直线使得直线BP与直线OM关于直线对称?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案