精英家教网 > 高中数学 > 题目详情

【题目】某地西红柿从 日起开始上市.通过市场调查,得到西红柿种植成本 (就是每 公斤西红柿的种植成本,单位:元)与上市时间 (单位:天)的数据如下表:

上市时间

50

110

250

种植成本

150

108

150


(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间 的变化关系: ,并求出函数解析式;
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.

【答案】
(1)解:由提供的数据知道,描述西红柿种植成本 与上市时间 的变化关系的函数不可能是常数函数,从而用函数 中的任意一个进行描述时都应有 ,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数 进行描述.

将表格所提供的三组数据分别代入 ,得到

解方程组得

所以描述西红柿种植成本 与上市时间 的变化关系的函数为:


(2)解:当 时,西红柿种植成本最低为: (元)
【解析】(1)根据题意结合已知列出函数的解析式即可。(2)结合同意代入数值求出结果即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 的图象为C,则如下结论中正确的是(写出所有正确结论的编号).
①图象C关于直线 对称;
②图象C关于点 对称;
③函数f(x)在区间 内是减函数;
④把函数 的图象上点的横坐标压缩为原来的一半(纵坐标不变)可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,记正方形ABCD四条边的中点为S,M,N,T,连接四个中点得小正方形SMNT.将正方形ABCD,正方形SMNT绕对角线AC旋转一周得到的两个旋转体的体积依次记为V1 , V2 , 则V1:V2=(

A.8:1
B.2:1
C.4:3
D.8:3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x﹣lnx(x>0),则函数f(x)(
A.在区间(0,1)内有零点,在区间(1,+∞)内无零点
B.在区间(0,1)内有零点,在区间(1,+∞)内有零点
C.在区间(0,3),(3,+∞)均无零点
D.在区间(0,3),(3,+∞)均有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂生产某种产品每年需要固定投资 万元,此外每生产 件该产品还需要增加投资 万元,年产量为 件.当 时,年销售总收入为 万元;当 时,年销售总收入为 万元.记该工厂生产并销售这种产品所得的年利润为 万元。
(1)求 (万元)关于 (件)的函数关系式;
(2)该工厂的年产量为多少件时,所得年利润最大?并求出最大值.(年利润=年销售总收入年总投资)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所列边分别为a,b,c,且 . (Ⅰ)求角A;
(Ⅱ)若 ,试判断bc取得最大值时△ABC形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,可以将函数y=cos2x的图象( )
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=1,前n项和Sn满足条件 =4,n=1,2,…
(1)求数列{an}的通项公式和Sn
(2)记bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级开设选修课,其中数学选修课开了三个班.选课结束后,有四名选修英语的同学要求改修数学,但数学选修每班至多可再接收两名同学,那么安排好这四名同学的方案有(
A.72种
B.54种
C.36种
D.18种

查看答案和解析>>

同步练习册答案