精英家教网 > 高中数学 > 题目详情
设f(x)是以4为周期的偶函数,且当x∈[0,2]时,f(x)=2x,则f(log215)=   
【答案】分析:由f(x)是以4为周期的偶函数,知f(log215)=f(log215-4)=f(log2),再由当x∈[0,2]时,f(x)=2x,能求出结果.
解答:解:∵f(x)是以4为周期的偶函数,
且当x∈[0,2]时,f(x)=2x
∴f(log215)=f(log215-4)
=f(log215-log216)
=f(-log2)=f(log2),
=
=
故答案为:
点评:本题考查函数的周期性的应用,是基础题.解题时要认真审题,注意对数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、设f(x)是以4为周期的偶函数,且当x∈[0,2]时,f(x)=x,则f(7.6)=
0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是以4为周期的函数,且当x∈[-2,2]时,f(x)=x+1,则f(7.6)=
0.6
0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是以4为周期的偶函数,且当x∈[0,2]时,f(x)=2x,则f(log215)=
15
16
15
16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是以4为周期的偶函数,且当x∈[0,2]时,f(x)=2x,则f(log215)=______.

查看答案和解析>>

同步练习册答案