精英家教网 > 高中数学 > 题目详情
13.在数列{an}中,2a1=a2,且a${\;}_{n+1}=\frac{{a}_{n}}{n+1}+1$,则a3=$\frac{13}{9}$.

分析 利用已知条件列出方程,求出前两项,然后求解a3

解答 解:在数列{an}中,2a1=a2,且a${\;}_{n+1}=\frac{{a}_{n}}{n+1}+1$,
可得a2=$\frac{1}{2}$a1+1,解得a1=$\frac{2}{3}$;a2=$\frac{4}{3}$;a3=$\frac{{a}_{2}}{3}+1$=$\frac{4}{9}+1$=$\frac{13}{9}$.
故答案为:$\frac{13}{9}$.

点评 本题考查数列的递推关系式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)计算:$2{log_5}10+{log_5}0.25+{2^{{{log}_2}3}}$
(2)计算:${({5\frac{1}{16}})^{0.5}}+{({-1})^{-1}}÷{0.75^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)求f(x)的最小正周期和单调增区间;
(2)设p:x∈[$\frac{π}{4}$,$\frac{π}{2}$],q:|f(x)-m|<3,若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{2^x}{a}+\frac{a}{2^x}-1\;\;\;({a>0})$是R上的偶函数.
(1)求a的值;
(2)解不等式$f(x)<\frac{13}{4}$;
(3)若关于x的不等式mf(x)≥2-x-m在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax3+x.
(Ⅰ)若函数f(x)在x=1处取得极值,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,函数g(x)=f′(x)(x2+px+q) (其中f′(x)为函数f(x)的导数)的图象关于直线x=1对称,求函数g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=(  )
A.1B.2C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2-1,值域为{1,7}的“合一函数”共有(  )
A.10个B.9个C.8个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD为梯形,∠DAB=60°,AB∥CD,AD=CD=2AB=2,PD⊥底面ABCD,M为PC的中点.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若PD=$\sqrt{2}$,求二面角D-BM-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知an=2n-1(n∈N*),把数列{an}的各项排成如图所示的三角形数阵,记S(m,n)表示该数阵中第m行中从左到右的第n个数,则S(8,6)=(  )
A.67B.69C.73D.75

查看答案和解析>>

同步练习册答案