精英家教网 > 高中数学 > 题目详情
(2012•山东)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(Ⅰ)求证:a,b,c成等比数列;
(Ⅱ)若a=1,c=2,求△ABC的面积S.
分析:(I)由已知,利用三角函数的切化弦的原则可得,sinB(sinAcosC+sinCcosA)=sinAsinC,利用两角和的正弦公式及三角形的内角和公式代入可得sin2B=sinAsinC,由正弦定理可证
(II)由已知结合余弦定理可求cosB,利用同角平方关系可求sinB,代入三角形的面积公式S=
1
2
acsinB
可求.
解答:(I)证明:∵sinB(tanA+tanC)=tanAtanC
∴sinB(
sinA
cosA
 + 
sinC
cosC
)=
sinAsinC
cosAcosC

∴sinB•
sinAcosC+sinCcosA
cosAcosC
=
sinAsinc
cosAcosC

∴sinB(sinAcosC+sinCcosA)=sinAsinc
∴sinBsin(A+C)=sinAsinC,
∵A+B+C=π
∴sin(A+C)=sinB
即sin2B=sinAsinC,
由正弦定理可得:b2=ac,
所以a,b,c成等比数列.
(II)若a=1,c=2,则b2=ac=2,
cosB=
a2+c2-b2
2ac
=
3
4

∵0<B<π
∴sinB=
1-cos2B
=  
7
4

∴△ABC的面积S=
1
2
acsinB=
1
2
×1×2×
7
4
=
7
4
点评:本题主要考查了三角形的切化弦及两角和的正弦公式、三角形的内角和定理的应用及余弦定理和三角形的面积公式的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为
3
4

(Ⅰ)求抛物线C的方程;
(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;
(Ⅲ)若点M的横坐标为
2
,直线l:y=kx+
1
4
与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当
1
2
≤k≤2时,|AB|2+|DE|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)在等差数列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm

查看答案和解析>>

同步练习册答案