精英家教网 > 高中数学 > 题目详情
设有两个命题p、q,其中命题p:对于任意的x∈R,不等式ax2+2x+1>0恒成立;命题q:f(x)=(4a-3)x在R上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是______.
若命题p:对于任意的x∈R,不等式ax2+2x+1>0恒成立
当a=0时,2x+1>0不恒成立; 
a>0
△=4-4a<0
时?a>1.
所以命题p为真命题?a>1.
命题q为真命题?0<4a-3<1?
3
4
<a<1.
∵两个命题中有且只有一个是真命题
若p为真命题,q为假命题,a>1; 
若p为假命题,q为真命题,
3
4
<a<1;
∴a的取值范围是(
3
4
,1)∪(1,+∞)
故答案为:(
3
4
,1)∪(1,+∞)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设有两个命题p,q,其中p:关于x的不等式x2+(a-1)x+a2>0的解集是R;q:f(x)=log(2a2+a+1)x是减函数,且p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有两个命题p、q,其中命题p:对于任意的x∈R,不等式ax2+2x+1>0恒成立;命题q:f(x)=(4a-3)x在R上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是
3
4
,1)∪(1,+∞)
3
4
,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌外国语学校高三(上)8月月考数学试卷(理科)(解析版) 题型:填空题

设有两个命题p、q,其中命题p:对于任意的x∈R,不等式ax2+2x+1>0恒成立;命题q:f(x)=(4a-3)x在R上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷E(一)(解析版) 题型:填空题

设有两个命题p、q,其中命题p:对于任意的x∈R,不等式ax2+2x+1>0恒成立;命题q:f(x)=(4a-3)x在R上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是   

查看答案和解析>>

同步练习册答案