精英家教网 > 高中数学 > 题目详情
在△ABC中,若(a+b+c)(a+b-c)=3ab,且sinC=2sinAcosB,则△ABC是(  )
分析:在△ABC中,由(a+b+c)(a+b-c)=3ab利用余弦定理求得 cosC=
1
2
,故 C=60°.再由sinC=2sinAcosB,利用正弦定理、余弦定理可得 a=b,从而判断△ABC的形状.
解答:解:在△ABC中,∵(a+b+c)(a+b-c)=3ab,∴a2+b2-c2=ab,∴cosC=
a2+b2 -c2 
2ab
=
1
2
,∴C=60°.
再由 sinC=2sinAcosB,可得 c=2a•
a2+c2 -b2 
2ac
=
a2+c2 -b2 
c
,∴a2=b2,∴a=b,
故△ABC是等边三角形,
故选A.
点评:本题主要考查正弦定理和余弦定理的应用,已知三角函数值求角的大小,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若
BC
=
a
CA
=
b
AB
=
c
a
b
=
b
c
=
c
a
,则△ABC的形状是△ABC的(  )
A、锐角三角形
B、直角三角形
C、等腰直角三角形
D、等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,若
BC
=
a
AC
=
b
AB
=
c
,且
|b|
=2
3
a
•cosA+
c
•cosC=
b
•sinB

(1)断△ABC的形状;
(2)求
a
c
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,则△ABC的形状是(  )
A、直角三角形B、等腰直角三角形C、等腰三角形D、等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若(a+c)(a-c)=b(b+c),则A等于(  )

查看答案和解析>>

同步练习册答案