精英家教网 > 高中数学 > 题目详情

【题目】定义符号函数,已知.

1)求关于的表达式,并求的最小值.

2)当时,函数上有唯一零点,求的取值范围.

3)已知存在,使得对任意的恒成立,求的取值范围.

【答案】(1);最小值为(2)(3)

【解析】

1)根据已知求出,分析其单调性可得函数的最小值;

2)当时,,由得:,即,令,在同一坐标系中分别作出两个函数在上的图象,数形结合可得答案;

3)若存在,使得对任意的恒成立,则对任意的恒成立,分类讨论可得答案.

1函数.

上为减函数,在上为增函数,

故当时,的最小值为

2)当时,函数

时,

得:,即

在同一坐标系中分别作出两个函数在上的图象,如下图所示:

,

当射线过点时,

当射线相切时,

当射线过点时,

由图可得:当时,两个函数图象有且只有一个交点,

即函数上有唯一零点;

3时,

得:

,且对任意的恒成立,

对任意的恒成立,

上单调递增,故当时,取最大值

的最小值为:

,解得:

,解得:

解得:

综上可得:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】两城市相距,现计划在两城市外以为直径的半圆上选择一点建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为,建在处的垃圾处理场对城和城的总影响度为,统计调查表明:垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理场建在的中点时,对城和城的总影响度为0.065

1)将表示成的函数;

2)判断上是否存在一点,使建在此处的垃圾处理场对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,BOAOCO所在直线两两垂直,且AO=CO,∠BAO=60°EAC的中点,三棱锥的体积为

(1)求三棱锥的高;

(2)在线段AB上取一点D,当D在什么位置时,的夹角大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,若,则称数列”.

1)若数列,且,求的取值范围;

2)若是等差数列,首项为,公差为,且,判断是否为数列

3)设数列是等比数列,公比为,若数列都是数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线分别与线段和直线交于点.

(1) ,求的值;

(2) 为线段的中点,求证: 直线与该抛物线有且仅有一个公共点.

(3) ,直线的斜率存在,且与该抛物线有且仅有一个公共点,试问是否一定为线段的中点? 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(,为实数),.

(1)若函数的最小值是,求的解析式;

(2)在(1)的条件下,在区间上恒成立,试求的取值范围;

(3)若,为偶函数,实数,满足,,定义函数,试判断值的正负,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆上的三点,其中的坐标为过椭圆的中心,且椭圆长轴的一个端点与短轴的两个端点构成正三角形.

1)求椭圆的方程;

2)当直线的斜率为1时,求面积;

3)设直线与椭圆交于两点,且线段的中垂线过椭圆轴负半轴的交点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxaxaR.

1)若fx)有两个零点,求a的取值范围;

2)设函数gx,证明:gx)有极大值,且极大值小于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的周期为,图象的一个对称中心为,将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数的图象.

1)求函数的解析式;

2)求证:存在,使得能按照某种顺序成等差数列.

查看答案和解析>>

同步练习册答案