精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn1bn=an+2成立.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(﹣1)n ,求数列{cn}的前n项和Tn

【答案】
(1)

解:设{an}的公差为d,

则a10=a1+9d=19,

解得a1=1,d=2,所以an=2n﹣1,

所以b1b2b3…bn1bn=2n+1…①

当n=1时,b1=3,

当n≥2时,b1b2b3…bn1=2n﹣1…②

①②两式相除得

因为当n=1时,b1=3适合上式,所以


(2)

解:由已知

则Tn=c1+c2+c3+…+cn=

当n为偶数时,

=

=

当n为奇数时,

=

=

综上:


【解析】(1)由题意和等差数列的前n项和公式求出公差,代入等差数列的通项公式化简求出an , 再化简b1b2b3…bn1bn=an+2,可得当n≥2时b1b2b3…bn1=2n﹣1,将两个式子相除求出bn;(2)由(1)化简cn=(﹣1)n ,再对n分奇数和偶数讨论,分别利用裂项相消法求出Tn , 最后要用分段函数的形式表示出来.
【考点精析】本题主要考查了等差数列的前n项和公式和数列的前n项和的相关知识点,需要掌握前n项和公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 是边长为的正方形, 平面 平面 .

(Ⅰ)求证:

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据

x

2

4

5

6

8

y

30

40

60

50

70

回归方程为 =bx+a,其中b= ,a= ﹣b
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程 =bx+a;
(3)预测销售额为115万元时,大约需要多少万元广告费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲船在岛B的正南A处,AB=10千米.甲船以每小时4千米的速度向北航行,同时,乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去.当甲船在AB之间,且甲、乙两船相距最近时,它们所航行的时间是(  )

A. 分钟 B. 小时 C. 21.5分钟 D. 2.15分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A﹣BCED的体积为16.

(1)求实数a的值;
(2)将直角三角形△ABD绕斜边AD旋转一周,求该旋转体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中, 底面,底面为菱形, 交点,已知,.

)求证: 平面

)求证: 平面

)设点内(含边界), ,说明满足条件的点的轨迹,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和抛物线有公共焦点 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点(其中点在第四象限内).

(1)若,求直线的方程;

(2)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为的交点,的中点.

(I)求证:直线平面

(II)求证:平面

(III)二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内三点.

(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径

(2)求过点与条件 (1) 的圆相切的直线方程.

查看答案和解析>>

同步练习册答案