精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知长方体ABCD-A′B′C′D′中,AB=2
3
,BC=2
3
,AA′=2

(1)CD和B′D′所成的角是多少度;
(2)BB′和CD′所成的角是多少度.
分析:(1)(2)利用长方体的性质和异面直线所成的角、直角三角形的边角关系即可得出.
解答:解:(1)如图所示.精英家教网
连接B′D′.
由长方体可得:CD∥C′D′.
∴∠C′D′B′即为异面直线CD和B′D′所成的角.
在长方体中,∵AB=BC=2
3

∴底面ABCD是正方形,因此A′B′C′D′是正方形.
∴∠C′D′B′=45°.
 (2)连接CD′.
由长方体可得:BB′∥CC′.
∴∠C′CD′是异面直线BB′和CD′所成的角.
在Rt△CC′D′中,
∵CC′=AA′=2,CD=AB=2
3

∴tan∠C′CD′=
CD
CC
=
3

∴∠C′CD′=60°.
点评:本题考查了长方体的性质和异面直线所成的角、直角三角形的边角关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A1B1C1D1,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30°,AE垂直BD于E,F为A1B1的中点.
(I)求异面直线AE与BF所成的角;
(II)求平面BDF与平面AA1B所成二面角(锐角)的大小
(III)求点A到平面BDF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A1B1C1D1中,AB=2
3
,AD=2
3
,AA1=2.
求:
①BC和A1C1所成的角度是多少度?
②AA1和B1C1所成的角是多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A1B1C1D1中,AB=3,AD=AA1=2,点O是线段BC1的中点,点M是OD的中点,点E是线段AB上一点,AE>BE,且A1E⊥OE.
①求AE的长;
②求二面角A1-DE-C的正切值;
③求三棱锥M-A1OE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A′B′C′D′中,AB=2
3
,AD=2
3
,AA′=2,
(1)哪些棱所在直线与直线BA’是异面直线?
(2)直线BC与直线A’C’所成角是多少度?
(3)哪些棱所在直线与直线AA’是垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宣武区一模)如图,已知长方体AC1中,AB=BC=1,BB1=2,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F
(1)求证:AC1⊥平面EBD;
(2)求点A到平面A1B1C的距离;
(3)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

同步练习册答案