精英家教网 > 高中数学 > 题目详情
3.已知直线x+2ay-1=0与直线(a-2)x-ay+2=0平行,则a的值是(  )
A.$\frac{3}{2}$B.$\frac{3}{2}$或0C.-$\frac{2}{3}$D.-$\frac{2}{3}$或0

分析 由直线的平行关系可得a的方程,解方程排除重合可得.

解答 解:∵直线x+2ay-1=0与直线(a-2)x-ay+2=0平行,
∴1×(-a)=2a(a-2),解得a=$\frac{3}{2}$或a=0,
经验证当a=0时两直线重合,应舍去,
故选:A

点评 本题考查直线的一般式方程和平行关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知tanα=2,则$\frac{sinα+2cosα}{5sinα-6cosα}$=1;$\frac{1}{{2sinαcosα-{{cos}^2}α}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个边长为6的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒.当无盖方盒的容积V最大时,x的值为(  )
A.3B.2C.1D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的体积为$\sqrt{6}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,若输入如下四个函数:
①f(x)=sinx
②f(x)=cosx
③f(x)=$\frac{1}{x}$
④f(x)=log2x
则输出的函数是(  )
A.f(x)=sinxB.f(x)=cosxC.f(x)=$\frac{1}{x}$D.f(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆C1:(x-3)2+(y+1)2=1,圆C2与圆C1关于直线2x-y-2=0对称,则圆C2的方程为(  )
A.(x-1)2+(y-2)2=1B.x2+(y-1)2=1C.(x+1)2+(y-1)2=1D.(x+2)2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,sin2C≤(sinA-sinB)2+sinAsinB,则C的取值范围是(  )
A.(0,$\frac{π}{6}$]B.[$\frac{π}{6}$,π)C.(0,$\frac{π}{3}$]D.[$\frac{π}{3}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=|x-a|+|x+1|,若对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0恒成立,则实数a的取值范围为(-∞,2].f(x)最小值为3,则实数a的取值范围为{2,-4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足a1=1,an=$\frac{1}{2}$an-1+1(n≥2).
(1)若bn=an-2,求证:{bn}为等比数列;
(2)求{an}的通项公式;
(3)求{an}的前n项和Sn

查看答案和解析>>

同步练习册答案