精英家教网 > 高中数学 > 题目详情
20.定义在R上的偶函数f(x),对任意的实数x都有f(x+4)=-f(x)+2,且f(-3)=3,则f(2015)=(  )
A.-1B.3C.2015D.-4028

分析 对任意的实数x都有f(x+4)=-f(x)+2,可得函数是周期为8的周期函数,结合f(-3)=3,可得f(2015)的值.

解答 解:∵对任意的实数x都有f(x+4)=-f(x)+2,
令x=-1,则f(3)=-f(-1)+2=3,
∴f(-1)=-1,
又由f(x+8)=f[(x+4)+4]=-f(x+4)+2=-[-f(x)+2]+2=f(x),
故函数f(x)是周期为8的周期函数,
故f(2015)=f(-1)=-1,
故选:A

点评 本题考查的知识点是函数的周期性,其中根据已知分析出函数是周期为8的周期函数,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列运算正确的是(  )
A.log32•log36=log312B.log32•log36=log38
C.log32•log43=log126D.log32•log43=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求log3(81$\sqrt{3}$)+$\frac{2lg(lg{a}^{100})}{2+lg(lga)}$=$\frac{13}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\frac{1}{2}$x2-ax+4lnx在($\frac{1}{2}$,+∞)是单调递增的,则a的取值范围是a≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.将下列指数式化为对数式,对数式化为指数式.
(1)3-2=$\frac{1}{9}$;
(2)1og${\;}_{\frac{1}{3}}$9=-2;
(3)1g0.001=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x+$\sqrt{1-{x}^{2}}$的定义域为[-1,1],值域为[1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数a1,a2,a3,a4各不相等,若集合{x|x=ai+aj,1≤i≤j≤4}={1,2,3,4,5,6,7},则a12+a22+a32+a42=21.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设等差数列{an}的前n项和为Sn,且满足an+Sn=An2+Bn+1(A≠0)则$\frac{B-1}{A}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+$\frac{π}{4}$)(A>0,ω>0),g(x)=tanx,它们的最小正周期之积为2π2,f(x)的最大值为2g($\frac{17π}{4}$)
(1)求f(x)的单调递增区间
(2)设h(x)=$\frac{3}{2}$f2(x)+2$\sqrt{3}$cos2x,当x∈[a,$\frac{π}{3}$]时,h(x)有最小值为3,求a的值.

查看答案和解析>>

同步练习册答案