精英家教网 > 高中数学 > 题目详情
8.正方体AC1中,与面ABCD的对角线AC异面的棱有6条.

分析 在正方体AC1中,列举出与面ABCD的对角线AC异面的所有的棱,由此能求出结果.

解答 解:如图,在正方体AC1中,与面ABCD的对角线AC异面的棱有:
BB1,DD1,A1B1,A1D1,D1C1,B1C1
共6条.
故答案为:6.

点评 本题考查正方体中与面对角线异面的棱的条数的判断,是基础题,解题时要认真审题,注意正方体的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.不等式$\frac{2}{x}$<-3的解集是(  )
A.(-∞,-$\frac{2}{3}$)B.(-$∞,-\frac{2}{3}$)∪(0,+∞)C.(-$\frac{2}{3}$,0)∪(0,+∞)D.(-$\frac{2}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线$\frac{{x}^{2}}{4}$+$\frac{y|y|}{9}$=1和曲线kx+y-3=0有三个交点,则k的取值范围是(-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$)∪($\frac{3}{2}$,$\frac{3\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示是函数y=2sin(ωx+φ)(ω>0,|φ|<π)的图象的一部分,求
(1)ω,φ的值.
(2)函数图象的对称轴方程和对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,四棱锥P-ABCD中,PA⊥底面ABCD,BA⊥AD,AD=CD=2AB=2PA=2,AB∥CD,E是PC的中点,F是DC上一动点,R是PB上一个动点.
(1)求证:当F是DC中点时,无论R在PB上的何处,都有平面BEF⊥平面RCD;
(2)若CF=2DF,当DR∥平面EFB时,求四棱锥R-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,已知空间四边形ABCD的边BC=AC,AD=BD,BE⊥CD于点E,AH⊥BE于点H,求证:AH⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设空间两个单位向量$\overrightarrow{OA}$=(m,n,0),$\overrightarrow{OB}$=(0,n,p)与向量$\overrightarrow{OC}$=(1,1,1)的夹角都等于$\frac{π}{4}$,求cos∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点A,C关于y轴对称,点A,B关于原点对称.
(1)若椭圆的离心率为$\frac{\sqrt{2}}{2}$,且A($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),求椭圆的标准方程;
(2)设D为直线BC与x轴的交点,E为椭圆上一点,且A,D,E三点共线,若直线AB,BE的斜率分别为k1,k2,试问,k1•k2是否为定值?若是,求出该定值;若不是,请加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在菱形ABCD中,∠DAB=60°,E为AD的中点,正方形DBFG所在平面与平面ABCD垂直.
(1)求证:BE⊥平面BCF;
(2)求直线AF与平面BCG所成角的正弦值.

查看答案和解析>>

同步练习册答案