精英家教网 > 高中数学 > 题目详情

【题目】某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀, 授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为,他们考核所得的等级相互独立.

(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;

(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.

【答案】

【解析】

(1)甲考核为优秀为事件A乙考核为优秀为事件B丙考核为优秀为事件C甲、乙、丙至少有一名考核为优秀为事件E.

则事件ABC是相互独立事件,事件与事件E是对立事件,于是

P(E)1P()1(1)(1)(1).

(2)ξ的所有可能取值为30,40,50,60.

P(ξ30)P()(1)(1)(1)

P(ξ40)P(A)P(B)P(C)

P(ξ50)P(AB)P(AC)P(BC)

P(ξ60)P(ABC).

所以ξ的分布列为

ξ

30

40

50

60

P





∴E(ξ)30×40×50×60×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图如图,(1)画出该几何体的直观图(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式;

2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量








频数








天的各需求量的频率作为各需求量发生的概率.

若花店一天购进枝玫瑰花, 表示当天的利润(单位:元),求的分布列, 数学期望及方差;

若花店一天购进枝或枝玫瑰花,你认为应购进枝还是枝?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是底面边长为1的正三棱锥,分别为棱长上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)证明:为正四面体;

(2)若,求二面角的大小;(结果用反三角函数值表示)

(3)设棱台的体积为,是否存在体积为且各棱长均相等的直平行六面体,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥的体积减去棱锥的体积.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求点C到平面C1DE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(1)求曲线的方程;

(2)点是曲线轴正半轴的交点,点在曲线上,若直线的斜率满足面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD和矩形ABEF中,,矩形ABEF可沿AB任意翻折.

1)求证:当点FAD不共线时,线段MN总平行于平面ADF.

2)“不管怎样翻折矩形ABEF,线段MN总与线段FD平行”这个结论正确吗?如果正确,请证明;如果不正确,请说明能否改变个别已知条件使上述结论成立,并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】13分){an}是公比为正数的等比数列a1=2a3=a2+4

)求{an}的通项公式;

)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内切在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设.问:对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

同步练习册答案