精英家教网 > 高中数学 > 题目详情

【题目】已知一个放置在水平桌面上的密闭直三棱柱容器,如图1为正三角形,,里面装有体积为的液体,现将该棱柱绕旋转至图2.在旋转过程中,以下命题中正确的个数是(

①液面刚好同时经过三点;

②当平面与液面成直二面角时,液面与水平桌面的距离为

③当液面与水平桌面的距离为时,与液面所成角的正弦值为.

A.0B.1C.2D.3

【答案】D

【解析】

①若液面刚好同时经过,,三点,则液体的体积为四棱锥,进而求解即可;②当平面与液面成直二面角时,即为图2的位置,画出图形,可先求得液面上方的三棱柱以四边形为底面的高,再与直三棱柱以四边形为底面的高求差即可;③由①可得此时液面与水平桌面的距离为,画出图形,即可求解.

①若液面刚好同时经过,,三点,则液体的体积为四棱锥,

因为,所以①正确;

②当平面与液面成直二面角时,即为图2的位置,设液面与直三棱柱的交点为,如图所示,

因为直三棱柱的体积为,

所以直棱柱的体积为,

所以,,则在边上的高为,

因为在边上的高为,所以液面与水平桌面的距离为,所以②正确;

③当液面刚好同时经过,,三点时,如图所示,

此时,则,

易得,则边上的高为,

所以,

设点到平面的距离为,则,即,

即液面与水平桌面的距离为,

由棱柱的对称性可得点到平面的距离为,设与液面所成角为,

,所以③正确,

所以①②③正确,

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处的切线与轴平行,求的极值;

2)当时,试讨论方程实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 设椭圆的左焦点为,左顶点为,顶点为B.已知为原点).

(Ⅰ)求椭圆的离心率;

(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数

(1)证明:

(2)若不等式的解集是非空集,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分13分)

工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.

1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?

2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中的一个排列,求所需派出人员数目的分布列和均值(数字期望)

3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业积极响应国家“科技创新”的号召,大力研发人工智能产品,为了对一批新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如下表所示:

试销单价(百元)

1

2

3

4

5

6

产品销量(件)

91

86

78

73

70

附:参考公式:

参考数据:.

1)求的值;

2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(百元)的线性回归方程(计算结果精确到整数位);

3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“有效数据”.现从这6组销售数据中任取2组,求抽取的2组销售数据都是“有效数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:

1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);

2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望

3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:

1)估计该批次产品长度误差绝对值的数学期望;

2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.

查看答案和解析>>

同步练习册答案