精英家教网 > 高中数学 > 题目详情
4.某电视传媒公司为了了解某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该类体育节目时间的频率分布直方图,其中收看时间分组区间是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].将日均收看该类体育节目时间不低于40分钟的观众称为“体育迷”.则抽取的100名观众中“体育迷”有15名.

分析 由频率分布直方图先求出“体育迷”的频率,由此能求出抽取的100名观众中“体育迷”有多少名.

解答 解:由频率分布直方图得:
“体育迷”的频率为:1-(0.012+0.020+0.025+0.028)×10=0.15,
∴抽取的100名观众中“体育迷”有100×0.15=15名.
故答案为:15.

点评 本题考查抽取的100名观众中“体育迷”有多少名的求法,是基础题,解题时要认真审题,注意频率分布直方图的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.-300°角终边所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.随着我市九龙江南岸江滨路建设的持续推进,未来市民将新增又一休闲好去处,据悉南江滨路建设工程规划配套建造一个长方形公园ABCD,如图所示,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成,已知休闲区A1B1C1D1的面积为4000m2,人行道的宽度分别为4m和10m.
(1)若休闲区的长A1B1=x m,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{3}{1-\sqrt{1-x}}$的定义域可用区间表示为(-∞,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.运行如图所示程序框图,输出的S的值等于14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(cos2x,$\sqrt{3}$sinx),$\overrightarrow{b}$=(1,cosx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+m,且当x∈[0,$\frac{π}{6}$]时,f(x)的最小值为2.
(Ⅰ)求m的值,并求f(x)图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)2]-f(x),x∈[0,$\frac{π}{6}$],求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z是复数,z-3i为实数,$\frac{z-5i}{2-i}$为纯虚数(i为虚数单位).
(Ⅰ)求复数z;
(Ⅱ)求$\frac{z}{1-i}$的模.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,最小正周期为π且图象关于y轴对称的函数是(  )
A.y=sin2x+cos2xB.y=sinx•cosxC.y=|cos2x|D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知某中学食堂每天供应3000名学生用餐,为了改善学生伙食,学校每星期一有A、B两种菜可供大家免费选择(每人都会选而且只能选一种菜).调查资料表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有40%改选A种菜.用an,bn分别表示在第n个星期一选A的人数和选B的人数,如果a1=2000.
(1)请用an、bn表示an+1与bn+1
(2)证明:数列{an-2000}是常数列.

查看答案和解析>>

同步练习册答案