精英家教网 > 高中数学 > 题目详情

【题目】在R上定义运算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),则a+b的值为(
A.1
B.2
C.4
D.8

【答案】C
【解析】解:∵xy=x(1﹣y), ∴(x﹣a)(x﹣b)>0得
(x﹣a)[1﹣(x﹣b)]>0,
即(x﹣a)(x﹣b﹣1)<0,
∵不等式(x﹣a)(x﹣b)>0的解集是(2,3),
∴x=2,和x=3是方程(x﹣a)(x﹣b﹣1)=0的根,
即x1=a或x2=1+b,
∴x1+x2=a+b+1=2+3,
∴a+b=4,
故选:C.
【考点精析】根据题目的已知条件,利用解一元二次不等式的相关知识可以得到问题的答案,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x. 给出如下结论:
①对任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正确的有(
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ex (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,ABCD是菱形,PA⊥平面ABCD

(1)求证:BD⊥PC;
(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱为长方体,点上的一点.

(1)若的中点,当为何值时,平面平面

(2)若 ,当时,直线与平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的正方形, 底面 ,且

(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

(Ⅱ)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分) 选修4-4:极坐标系与参数方程

在极坐标系中曲线的极坐标方程为,点.以极点为原点,以极轴为轴正半轴建立直角坐标系.斜率为的直线过点,且与曲线交于两点.

)求出曲线的直角坐标方程和直线的参数方程;

)求点到两点的距离之积.

查看答案和解析>>

同步练习册答案