精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中,a1=3,an+1=can+m(c,m为常数)
(1)当c=1,m=1时,求数列{an}的通项公式an
(2)当c=2,m=﹣1时,证明:数列{an﹣1}为等比数列;
(3)在(2)的条件下,记bn= ,Sn=b1+b2+…+bn , 证明:Sn<1.

【答案】
(1)解:当c=1,m=1时,数列{an}中,a1=3,an+1=an+1,

∴数列{an}是首项为3,公差为1的等差数列,

∴an=3+(n﹣1)×1=n+2


(2)解:证明:当c=2,m=﹣1时,数列{an}中,a1=3,an+1=2an﹣1,

∴an+1﹣1=2(an﹣1),

又a1﹣1=3﹣1=2,

∴数列{an﹣1}为首项为2,公比为2的等比数列


(3)解:∵数列{an﹣1}为首项为2,公比为2的等比数列,

,∴an=2n+1,

∴bn= =

∴Sn=b1+b2+…+bn=

= =1﹣ <1.

∴Sn<1


【解析】(1)当c=1,m=1时,数列{an}是首项为3,公差为1的等差数列,由此能求出an的表达式.(2)当c=2,m=﹣1时,an+1=2an﹣1,从而an+1﹣1=2(an﹣1),由此能证明数列{an﹣1}为首项为2,公比为2的等比数列.(3)推导出an=2n+1,从而bn= = ,由此能证明Sn<1.
【考点精析】关于本题考查的数列的通项公式,需要了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系 xOy 中,圆锥曲线 C 的参数方程为 为参数),定点 , F1,F2 是圆锥曲线 C 的左,右焦点.
(1)以原点为极点、 x 轴正半轴为极轴建立极坐标系,求经过点 F1 且平行于直线AF2 的直线 l 的极坐标方程;
(2)在(1)的条件下,设直线 l 与圆锥曲线 C 交于 E,F 两点,求弦 EF 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1, 在直角梯形中, 为线段的中点. 沿折起,使平面 平面,得到几何体,如图2所示.

1)求证: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,焦距为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,动直线 交椭圆两点, 是椭圆上一点,直线的斜率为,且 是线段延长线上一点,且 的半径为 的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两个等差数列,记

其中表示个数中最大的数.

(Ⅰ)若 ,求的值,并证明是等差数列;

(Ⅱ)证明:或者对任意正数,存在正整数,当时, ;或者存在正整数,使得是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,函数f(x)=loga
(1)求f(x)的定义域D及其零点;
(2)设g(x)=mx2﹣2mx+3,当a>1时,若对任意x1∈(﹣∞,﹣1],存在x2∈[3,4],使得f(x1)≤g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾;
(4)其中甲、乙两人自左向右从高到矮排列且互不相邻

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点. 求证:
(Ⅰ)直线EF∥平面ACD;
(Ⅱ)平面EFC⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2 ,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.

查看答案和解析>>

同步练习册答案