精英家教网 > 高中数学 > 题目详情

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.

(1)处的切线方程为;(2)函数的单调增区间为;单调减区间为;(3).

解析试题分析:(1)首先求函数的定义域,利用导数的几何意义求得处的切线的斜率,再利用直线的点斜式方程求得处的切线方程;(2)分别解不等式可得函数的单调递增区间、单调递减区间;(3)由已知“对于[1,2],使成立”上的最小值不大于上的最小值,先分别求函数的最小值,最后解不等式得实数的取值范围.
试题解析:函数的定义域为,                      1分
                                 2分
(1)当时,,       3分

,                                           4分
处的切线方程为.                    5分
(2).                 
,或时, ;                             6分
时, .                                        7分
时,函数的单调增区间为;单调减区间为.   8分
(如果把单调减区间写为,该步骤不得分)
(3)当时,由(2)可知函数上为增函数,
∴函数在[1,2]上的最小值为                9分
若对于[1,2],使成立上的最小值不大于<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的总成立,求实数的取值范围;
(Ⅲ)设函数,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.
(I)求函数上的最小值;
(Ⅱ)对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数。
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数有极值点,求的取值范围及的极值点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求的极大值;
(Ⅱ)若在定义域内单调递减,求满足此条件的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

预计某地区明年从年初开始的前个月内,对某种商品的需求总量 (万件)近似满足:N*,且
(1)写出明年第个月的需求量(万件)与月份 的函数关系式,并求出哪个月份的需求量超过万件;
(2)如果将该商品每月都投放到该地区万件(不包含积压商品),要保证每月都满足供应, 应至少为多少万件?(积压商品转入下月继续销售)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的最大值;
(2)若函数没有零点,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数有极小值
(Ⅰ)求实数的值;
(Ⅱ)若,且对任意恒成立,求的最大值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为正实数,.
(I)若的一个极值点,求的值;
(II)求的单调区间.

查看答案和解析>>

同步练习册答案