精英家教网 > 高中数学 > 题目详情

【题目】关于函数下列命题错误的是( )

A.函数的图像关于轴对称

B.在区间上,函数是减函数

C.函数的最小值为

D.在区间上,函数是增函数.

【答案】B

【解析】

因为,证明函数的奇偶性和单调性,即可求得答案.

奇偶性证明:

,

为偶函数

单调性证明:

,

根据对数函数单调性可知:单调增函数,

,根据对号函数图像可知:

, 是单调递增;

, 是单调递减.

根据复合函数单调性同增异减可知:

,是单调递增

,是单调递减.

,取得最小值,.

偶函数图像关于轴对称可知:

,是单调递减

,是单调递增.

综上所述, 对于A,函数的图像关于轴对称,A正确;

对于B,当时,是单调递减

时,是单调递增.故B错误;

对于C,函数的最小值为,故C正确;

对于D,在区间上,函数是增函数,故D正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,B1E⊥平面ABC,△AB1C是等边三角形,AB=2A1B1,AC=2BC,∠ACB=90°.

(1)证明:B1C∥平面A1DE;

(2)求二面角A﹣BB1﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的公共点为.

求直线的斜率;

Ⅱ)若点分别为曲线上的动点,当取最大值时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为,且各轮问题能否正确回答互不影响。

)求该选手进入第三轮才被淘汰的概率;

)求该选手至多进入第三轮考核的概率;

)该选手在选拔过程中回答过的问题个数记为,求随机变量的分布列和期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥中,底面是边长为4的正方形,是正三角形,平面平面分别是的中点.

(1)求证:平面平面

(2)若是线段上一点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若函数内有且只有一个零点,求此时函数的单调区间;

时,若函数上的最大值和最小值的和为1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求处的切线方程;

(Ⅱ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的单调增区间;

(2)若恰有三个不同的零点).

①求实数的取值范围;

②求证:

查看答案和解析>>

同步练习册答案