精英家教网 > 高中数学 > 题目详情
已知F1,F2为平面内两个定点,那么“|MF1|+|MF2|等于常数”是“点M的轨迹是以F1,F2为焦点的椭圆”的(  )
A、必要不充分条件
B、充分不必要条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:“点M的轨迹是以F1,F2为焦点的椭圆”⇒“|MF1|+|MF2|等于常数”,反之不成立,若常数≤两个定点的距离,其轨迹不是椭圆,即可判断出.
解答: 解:“点M的轨迹是以F1,F2为焦点的椭圆”⇒“|MF1|+|MF2|等于常数”,反之不成立,若常数≤两个定点的距离,其轨迹不是椭圆.
因此“|MF1|+|MF2|等于常数”是“点M的轨迹是以F1,F2为焦点的椭圆”的必要不充分条件.
故选:A.
点评:本题考查了椭圆的定义、简易逻辑的判定,考查了推理能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+φ)(0≤φ<π)是奇函数,则f(x)在[0,
4
]上的最大值与最小值的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)n0.350
第3组[170,175)30p
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.000
(Ⅰ)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①当m=-
3
4
时,圆C:(x-1)2+(y-2)2=25倍直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)截得的弦长最短.
②若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a=-1
③已知△ABC中,顶点A(2,1),B(-1,-1),∠C的平分线所在直线方程为x+2y-1=0,则顶点C的坐标为(
31
5
,-
13
5

④过点P引三条不共面的直线PA,PB,PC,其中∠BPC=90°,∠APC=∠APB=60°,且PA=PB=PC,则平面ABC⊥平面BPC,
其中正确的结论个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R的奇函数,且当x<0时,f(x)=x2.若对任意x∈[k,k+2],不等式f(x+k)≤f(3x)恒成立,则g(k)=log2|k|的最小值是(  )
A、2
B、
1
2
C、-
1
2
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知等边三角形的两顶点坐标分别是(x1,y1)、(x2,y2),求第三个顶点的坐标(用含x1,y1,x2,y2)的代数式表示;
(2)已知正方形的两顶点坐标分别是(x1,y1)、(x2,y2),求第三、四顶点的坐标(用含x1,y1,x2,y2)的代数式表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在N*上的函数,且f(1)=2,f(x+1)=
f(x)+1
2
,求f(x)的解析式、利用给定的特性求解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角△ABC的内切圆半径为1,则△ABC面积的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

画出下列函数的图象:
(1)y=|x-2|;
(2)y=|x-1|+|2x+4|.

查看答案和解析>>

同步练习册答案