精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,其焦点为,直线过点交于两点,当的斜率为时,.

1)求的值;

2)在轴上是否存在一点满足(点为坐标原点)?若存在,求点的坐标;若不存在,请说明理由.

【答案】12;(2)存在,.

【解析】

1)设,联立直线与抛物线的方程可得到,进而表示出,即可求出

2)设直线的方程为,联立直线与抛物线方程可得到,然后条件可转化为,即,运用此式可得到

1,当直线的斜率为时,其方程为

,由,得

代入抛物线方程得

所以,所以

所以.

2)由(1)可知,抛物线

由题意可知,直线的斜率存在,

设其方程为,将其代入抛物线方程为

假设在轴上存在一点满足

,即

所以,即

由于,所以,即

即在轴上存在点满足.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为α为参数,直线ly=kxk0),以O为极点,x轴正半轴为极轴建立极坐标系.

(Ⅰ)求曲线C的极坐标方程;

(Ⅱ)若直线l与曲线C交于AB两点,求|OA||OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布

1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;

22020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.

附:若随机变量,则;

对于一组数据,其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,,,MAB的中点,NCE的中点.

(1)求证:

(2)求证:平面ADE

(3)求点A到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批用于手电筒的电池,每节电池的寿命服从正态分布(寿命单位:小时).考虑到生产成本,电池使用寿命在内是合格产品.

1)求一节电池是合格产品的概率(结果四舍五入,保留一位小数);

2)根据(1)中的数据结果,若质检部门检查4节电池,记抽查电池合格的数量为,求随机变量的分布列、数学期望及方差.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平行四边形和矩形所在平面垂直,其中为棱的中点,的中点.

1)求证:

2)若点到平面的距离是,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国在欧洲的某孔子学院为了让更多的人了解中国传统文化,在当地举办了一场由当地人参加的中国传统文化知识大赛,为了了解参加本次大赛参赛人员的成绩情况,从参赛的人员中随机抽取名人员的成绩(满分100分)作为样本,将所得数据进行分析整理后画出频率分布直方图如图所示,已知抽取的人员中成绩在[5060)内的频数为3.

1)求的值和估计参赛人员的平均成绩(保留小数点后两位有效数字);

2)已知抽取的名参赛人员中,成绩在[8090)和[90100]女士人数都为2人,现从成绩在[8090)和[90100]的抽取的人员中各随机抽取2人,记这4人中女士的人数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知抛物线上一点到焦点的距离为6,点为其准线上的任意一点,过点作抛物线的两条切线,切点分别为.

1)求抛物线的方程;

2)当点轴上时,证明:为等腰直角三角形.

3)证明:为直角三角形.

查看答案和解析>>

同步练习册答案