【题目】已知抛物线,其焦点为
,直线
过点
与
交于
、
两点,当
的斜率为
时,
.
(1)求的值;
(2)在轴上是否存在一点
满足
(点
为坐标原点)?若存在,求
点的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数,直线l:y=kx(k>0),以O为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,求|OA||OB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布.
(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量
(千元).
的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线
的附近,且
,
,其中
.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量,则
;
对于一组数据,其回归线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,,
,M是AB的中点,N是CE的中点.
(1)求证:;
(2)求证:平面ADE;
(3)求点A到平面BCE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一批用于手电筒的电池,每节电池的寿命服从正态分布(寿命单位:小时).考虑到生产成本,电池使用寿命在
内是合格产品.
(1)求一节电池是合格产品的概率(结果四舍五入,保留一位小数);
(2)根据(1)中的数据结果,若质检部门检查4节电池,记抽查电池合格的数量为,求随机变量
的分布列、数学期望及方差.
附:若随机变量服从正态分布
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国在欧洲的某孔子学院为了让更多的人了解中国传统文化,在当地举办了一场由当地人参加的中国传统文化知识大赛,为了了解参加本次大赛参赛人员的成绩情况,从参赛的人员中随机抽取名人员的成绩(满分100分)作为样本,将所得数据进行分析整理后画出频率分布直方图如图所示,已知抽取的人员中成绩在[50,60)内的频数为3.
(1)求的值和估计参赛人员的平均成绩(保留小数点后两位有效数字);
(2)已知抽取的名参赛人员中,成绩在[80,90)和[90,100]女士人数都为2人,现从成绩在[80,90)和[90,100]的抽取的人员中各随机抽取2人,记这4人中女士的人数为
,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知抛物线
上一点
到焦点
的距离为6,点
为其准线
上的任意一点,过点
作抛物线
的两条切线,切点分别为
.
(1)求抛物线的方程;
(2)当点在
轴上时,证明:
为等腰直角三角形.
(3)证明:为直角三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com