精英家教网 > 高中数学 > 题目详情

【题目】若关于的不等式的解集为的解集为.

1)试求

2)是否存在实数,使得?若存在,求的范围;若不存在,说明理由.

【答案】1;(2)存在,.

【解析】

1)将不等式变形为,然后对的大小进行分类讨论,解出该不等式可得出集合,将不等式变形为,解出该不等式可得出集合

2)对的大小进行分类讨论,结合列出关于的不等式,解出即可得出实数的取值范围.

1)不等式即为.

①当时,原不等式即为,解该不等式得

此时

②当时,解该不等式得,此时

③当时,解该不等式得,此时.

不等式即为,解得,此时,

2)当时,,此时成立;

时,,要使得,则有,解得,此时

时,,则,要使得,则,这与矛盾.

综上所述,实数的取值范围是.

因此,存在实数,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过短轴的一个端点与两个焦点的圆的面积为,过椭圆的右焦点作斜率为的直线与椭圆相交于两点,线段的中点为.

(1)求椭圆的标准方程;

(2)过点垂直于的直线与轴交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断中正确的是( )

A. “若,则有实数根”的逆否命题是假命题

B. ”是“直线与直线平行”的充要条件

C. 命题“”是真命题

D. 命题“”在时是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题;命题:关于的方程有两个不同的实数根.

(1)若为真命题,求实数的取值范围;

为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届四川省绵阳南山中学高三二诊】已知椭圆的焦距为,且经过点.过点的斜率为的直线与椭圆交于两点,与轴交于点,点关于轴的对称点,直线轴于点.

1)求的取值范围;

2)试问: 是否为定值?若是,求出定值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:当时,

(2)若当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线相互平行,求的值;

2)试讨论的单调性;

3)设,对任意的,均存在,使得.试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度中国某五省情况图,则下列陈述正确的是( )

①2017年第一季度 总量高于4000亿元的省份共有3个;

②与去年同期相比,2017年第一季度五个省的总量均实现了增长;

③去年同期的总量前三位依次是省、省、省;

④2016年同期省的总量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

同步练习册答案